TD 2

Exercice 1 Soit E un espace topologique, et A, B des parties de E. Comparer les paires d'ensembles suivants. Lorsqu'il n'y a pas égalité, donner un contre-exemple.

1. $\overline{A \cup B}$ et $\overline{A} \cup \overline{B}$.

4. $A \cap B$ et $\mathring{A} \cap \mathring{B}$.

2. $\overline{A \cap B}$ et $\overline{A} \cap \overline{B}$.

5. $\partial (A \cup B)$ et $\partial A \cup \partial B$.

3. $A \stackrel{\circ}{\cup} B$ et $\mathring{A} \cup \mathring{B}$.

6. $\partial (A \cap B)$ et $\partial A \cup \partial B$.

Exercice 2 Soit E un espace topologique. Soit A une partie de E. Exprimer plus simplement les parties

$$\stackrel{\circ}{\stackrel{\circ}{\circ}} A \quad \text{et} \quad \stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\circ}}} A .$$

Trouver une partie A de \mathbb{R} telle que les parties A, $\overset{\circ}{A}$, $\overset{\circ}{\overline{A}}$, $\overset{\circ}{\overline{A}}$, $\overset{\circ}{\overline{A}}$, $\overset{\circ}{\overline{A}}$ soient toutes différentes.

Exercice 3 Soit A une partie d'un espace topologique. On note $\partial A = \overline{A} \setminus \mathring{A}$.

- 1. Montrer que si A est ouvert, alors ∂A est d'intérieur vide ; ce résultat reste-il vrai avec A fermé ? Avec A quelconque ?
- 2. Montrer que : A ouvert \iff $A \cap \partial(A) = \emptyset$.
- 3. Montrer que : A fermé $\iff \partial A \subset A$.
- 4. Montrer que : A ouvert et fermé $\iff \partial A = \emptyset$.
- 5. Montrer que $\partial(\overline{A}) \subset \partial A$ et $\partial(\mathring{A}) \subset \partial A$. Donner un exemple dans \mathbb{R} où ces trois ensembles sont distincts.

Exercice 4 Déterminer l'intérieur, l'adhérence et la frontière des parties suivantes de \mathbb{R} muni de sa topologie usuelle.

$$A =]-\infty, 1[\cup]1, 2] \cup \{3\}$$

$$B = \mathbb{Z}$$

$$C = \mathbb{Q}$$

$$D = \{(-1)^k + 2^k : k \in \mathbb{Z}\}$$

$$E = \{p^{-1} + q^{-1} : (p, q) \in (\mathbb{N}^*)^2\}$$

Même question dans \mathbb{R}^2 avec $A =]-\infty, -1] \times \{0\} \cup [-1, 1[\times [-1, 1[$.

Exercice 5 On munit \mathbb{R}^2 de sa topologie usuelle. Soit A le sous-ensemble de \mathbb{R}^2 défini par

$$A = \{(x,y) \mid x > 0, y \ge 0, xy < 1\} \cup \{(0,0)\}.$$

- 1. Est-ce une partie ouverte, fermée dans \mathbb{R}^2 ? Déterminer $\overset{\circ}{A}, \overline{A}, \partial A$.
- 2. On munit A de la distance induite. Indiquer si les parties suivantes sont ouvertes fermées dans A et dans \mathbb{R}^2 :

$$B =]0, +\infty[\times\{0\}] \qquad C = \{(x, y) \mid x > 0, y > 0, xy < 1\}$$
$$D = \{(x, y) \mid x > 0, y \ge 0, xy < 1/2\}$$

Exercice 6 Soit X un espace topologique, Y une sous-espace de X muni de la topologie induite et A une partie de Y.

- 1) On note \overline{A} l'adhérence de A dans X et \overline{A}^Y l'adhérence de A dans Y. Montrer que $\overline{A}^Y = \overline{A} \cap Y$.
- 2) On note \mathring{A} l'intérieur de A dans X et $\overset{\circ}{A}$ l'intérieur de A dans Y. Montrer que $\mathring{A}\subseteq \overset{\circ}{A}$. Donner un exemple où l'inclusion est stricte.

Exercice 7 (droite numérique achevée) On note $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$, et $[a, +\infty) = (a, +\infty) \cup \{+\infty\}$, $(-\infty, b] = (-\infty, b) \cup \{-\infty\}$.

- 1. Montrer que $\mathcal{B} = \{(a,b) \mid a,b \in \mathbb{R}\} \cup \{(a,+\infty] \mid a \in \mathbb{R}\} \cup \{[-\infty,b) \mid b \in \mathbb{R}\}$ est une base pour une topologie sur \mathbb{R} .
- 2. Avec la convention $\arctan(+\infty) = \pi/2$ et $\arctan(-\infty) = -\pi/2$, montrer que $d(x,y) = |\arctan x \arctan y|$ définit une distance sur $\overline{\mathbb{R}}$ et que l'application arctan est une isométrie bijective de $(\overline{\mathbb{R}}, d)$ dans $[-\pi/2, \pi/2]$ muni de la distance usuelle.
- 3. Montrer que la topologie induite par la distance d coïncide avec la topologie engendrée par la base \mathcal{B} .
- 4. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels et $\ell\in\overline{\mathbb{R}}$. Montrer que $x_n\to\ell$ au sens habituel si et seulement si $x_n\to\ell$ dans $(\overline{\mathbb{R}},d)$.
- 5. Montrer que toute suite d'éléments de $\overline{\mathbb{R}}$ admet une sous-suite convergente dans $(\overline{\mathbb{R}}, d)$.

Exercice 8 (Distances sur l'espace des polynômes) Si P et Q sont des polynômes à coefficients réels, on définit

$$d_0(P,Q) = \sup_{x \in [0,1/2]} |P(x) - Q(x)|,$$

$$d_1(P,Q) = \int_0^1 |P(x) - Q(x)| dx,$$

$$d_2(P,Q) = \begin{cases} \deg(P-Q) + 1 & \text{si } P \neq Q, \\ 0 & \text{sinon.} \end{cases}$$

- 1. Montrer que ce sont des distances sur l'espace $\mathbb{R}[X]$.
- 2. Quel est le comportement de la suite $(X^n)_{n\in\mathbb{N}}$ pour chacune de ces distances?

Exercice 9 Soit E un ensemble fini. Lorsque A et B sont deux parties de E, on note $A\Delta B$ leur différence symétrique, définie par $A\Delta B=(A\setminus B)\cup(B\setminus A)$, et on pose $d(A,B)=\operatorname{card}(A\Delta B)$. Montrer que d est une distance sur l'ensemble des parties de E.

Exercice 10 Soit (E, d) un espace métrique. Soit φ une application de $[0, +\infty[$ dans $[0, +\infty[$, telle que :

- (a) $\varphi(x) = 0 \Leftrightarrow x = 0$,
- (b) φ est croissante,
- (c) $\forall u, v \geq 0, \ \varphi(u+v) \leq \varphi(u) + \varphi(v)$ (on dit que φ est sous-additive).
- 1. Vérifier que l'application $\varphi(d) := \varphi \circ d$ est une distance sur E.
- 2. Montrer que toute fonction concave non nulle $\varphi : [0, +\infty[\to [0, +\infty[$ telle que $\varphi(0) = 0$ vérifie les conditions (a), (b) et (c). En déduire que d/(1+d), $\min(1,d)$, $\ln(1+d)$, et d^{α} pour $0 < \alpha < 1$ sont des distances sur E.

- 3. On suppose que φ est continue en 0. Lorsque d est une distance sur E, on note pour $x \in E$ et r > 0, $B_d(x, r) = \{y \in E : d(x, y) < r\}$ la boule ouverte de centre x et de rayon r.
 - Montrer que pour tout $x \in E$ et r > 0, $B_{\varphi(d)}(x, \varphi(r)) \subset B_d(x, r)$.
 - Montrer que pour tout $x \in E$ et r > 0, il existe r' > 0 tel que $B_d(x, r') \subset B_{\varphi(d)}(x, r)$.
 - En déduire que les distances d et $\varphi(d)$ définissent les mêmes ouverts.
- 4. Lorsque φ n'est pas continue en 0, montrer que les boules pour la distance $\varphi(d)$ sont des singletons dès que le rayon est suffisamment petit.

Exercice 11 (Espace de suites) Soit $E = \mathbb{R}^{\mathbb{N}}$ l'ensemble des applications de \mathbb{N} dans \mathbb{R} .

Pour tout f et g dans E, on note

$$d(f,g) = \sum_{k=0}^{\infty} \frac{1}{2^k} \min(|g(k) - f(k)|, 1)$$

- 1. Montrer que cette formule définit une distance sur E, et que pour cette distance, E est borné.
- 2. Soit $K \in \mathbb{N}$. Montrer que :
 - si pour tout $k \in [0, K], |g(k) f(k)| \le 2^{-K}, \text{ alors } d(f, g) \le 3 \times 2^{-K},$
 - si $d(f,g) \le 2^{-2K}$, alors pour tout $k \in [0,K], |g(k) f(k)| \le 2^{-K}$.
- 3. Montrer que $d(f, f_n) \to 0$ si et seulement si (f_n) converge ponctuellement vers f.
- 4. Montrer que dans (E, d), toute suite de Cauchy converge. On dit que l'espace métrique (E, d) est complet.
- 5. Soit T l'application de E dans E définie par T(f)(n) = f(n+1) pour tout $n \in \mathbb{N}$. Montrer que T est lipschitzienne pour la distance d.

Exercice 12 (Plus courte distance entre deux parties d'un espace métrique) Soit (E, d) un espace métrique.

- 1. La formule $\operatorname{dist}(A,B) = \inf\{d(a,b) \; ; \; (a,b) \in A \times B\}$ définit-elle une distance sur l'ensemble des parties non vides de E?
- 2. Montrer que pour toutes parties A, B, C de E,

$$dist(A, C) \le dist(A, B) + diam(B) + dist(B, C).$$

3. Trouver un exemple de F fermée, telle que d(x, F) n'est pas atteinte.

Exercice 13 (Distance SNCF) On munit \mathbb{R}^2 muni de la norme euclidienne $\|\cdot\|$. Pour tout x et y dans \mathbb{R}^2 , on définit $D(x,y) = \|x-y\|$ si x et y sont colinéaires et $D(x,y) = \|x\| + \|y\|$ sinon.

- 1. Montrer que $D(x,y) \ge ||x-y||$ pour tout x et y dans \mathbb{R}^2 . Montrer que D est une distance.
- 2. Décrire géométriquement la boule $B_D(x,r) = \{y \in \mathbb{R}^2 : D(x,y) < r\}$ pour $x \in \mathbb{R}^2$ et $r \in \mathbb{R}_+^*$ quelconques fixés.

Exercice 14 (Distance ultramétrique) Soit E un ensemble et $d: E \times E \longrightarrow \mathbb{R}_+$ telle que

- (i) $\forall (x,y) \in E \times E, \ d(x,y) = d(y,x)$
- (ii) $\forall (x,y) \in E \times E, \ d(x,y) = 0 \Leftrightarrow x = y$
- (iii) $\forall (x, y, z) \in E^3, \ d(x, y) \le \max(d(x, z), d(z, y))$
 - 1. Montrer que d est une distance et que si $d(x, z) \neq d(z, y)$, (iii) est une égalité : dans E tous les triangles sont isocèles.

- 2. Montrer que si r > 0 et $x \in E$, pour tout $y \in B(x, r)$, B(y, r) = B(x, r).
- 3. Montrer qu'une suite $(x_n)_{n\geq 0}$ de points de E est de Cauchy si et seulement si la suite $(d(x_n,x_{n+1}))_{n\geq 0}$ tend vers 0.
- 4. Soit p un nombre premier. Pour tout entier non nul, on définit $\nu_p(n)$ comme étant l'exposant de p dans la décomposition de n en facteurs premiers. Si $x, y \in \mathbb{Z}$, on pose

$$d_p(x,y) = \begin{cases} p^{-\nu_p(x-y)} & \text{si } x \neq y \\ 0 & \text{si } x = y \end{cases}$$

- a) Montrer que d_p est une distance ultramétrique sur \mathbb{Z} .
- b) Soit $n \in \mathbb{N}$ et $x \in \mathbb{Z}$, déterminer les éléments de la boule fermée $\overline{B}(x, p^{-n})$ et de la boule ouverte $B(x, p^{-n})$.
- c) Montrer que la suite de terme général $u_n = 6^n$ converge vers 0 dans (\mathbb{Z}, d_2) mais diverge dans (\mathbb{Z}, d_5) .

Exercice 15 On considère l'espace métrique $(\mathbb{R}^2, d_{\infty})$.

- 1. Soit $C = [0,1] \times [0,1]$. L'ensemble $\mathbb{Q}^2 \cap C$ est-il dense dans C?
- 2. Soit $\lambda \in \mathbb{R}$ un paramètre fixé et $D = \{(x,y) \in \mathbb{R}^2 : y = \lambda x\}$. L'ensemble $\mathbb{Q}^2 \cap D$ est-il dense dans D?
- 3. Déterminer les valeurs d'adhérences des suites suivantes (α est un réel fixé) :

a)
$$u_n = (n, (-1)^n)$$

b) $u_n = ((-1)^n, (-1)^{n+1})$
c) $u_n = (1/n, \cos(n\alpha))$
d) $u_n = (\cos(n\alpha), \sin(n\alpha))$

Exercice 16 (Espace métrique produit) Soit (E_1, d_1) et (E_2, d_2) deux espaces métriques et (E, d) l'espace métrique produit.

- 1. Soit $(z_n) = (x_n, y_n)$ une suite de E. Soient A_z , A_x , A_y l'ensemble des valeurs d'adhérence de (z_n) , (x_n) , (y_n) . Démontrer une inclusion relative aux ensembles A_z , A_x , A_y et montrer qu'il n'y a pas toujours égalité.
- 2. Soient $A_1 \subset E_1$ et $A_2 \subset E_2$, non vides. À quelle condition $A_1 \times A_2$ est-elle ouverte dans (E, d)? À quelle condition $A_1 \times A_2$ est-elle fermée dans (E, d)? À quelle condition $A_1 \times A_2$ est-elle dense dans (E, d)?
- 3. On note p_1 et p_2 les projections canoniques de $E_1 \times E_2$ sur E_1 et E_2 . L'image par p_1 d'une partie ouverte dans (E, d) est-elle ouverte dans (E_1, d_1) ? Mêmes questions avec une partie fermée de (E, d) et avec une partie dense de (E, d).