	JASI-FUCHSIAN, ALMOST-FUCHSIAN D NEARLY-FUCHSIAN MANIFOLDS
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	Shanghai Institute for Mathematics and Interdisciplinary Sciences
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	Lecture II, 01/07/2025

Theorem (Nguyen - Schlenker - S. 125) orientable 1/ surface If a complete hyperbolic nandfold (M=Z×IR, h) is neakly almost-Fuchsian, ~ Z×3×3 with principal then it is nearly - Fuchsian. currentures in [-1,1] closed (not minimal) surface with principal currentures in (-1,1) 100 After FIFE (0 x)

Theorem (Nguyen - Schlenker - 5. 125)
Let (M, h) be a hyperbolic manifold, let SCM be an embedded, orientable, two-sided closed minimal surface with principal curvatures in [-1, 1].
Then any neighbourhood U of S in M contains a (non-minimal) surface with
principal curratures in (-1,1).

· · ·	Idea:	
· · · · · · · · · · · · · · · · · · ·	Find a "magne" function $f \in C^{\infty}(S, \mathbb{R})$ such that	· · · · · · · · · · · · · · · · · · ·
· · ·	$S_{tf} = \frac{3}{2} \exp (tf N(p)) p \in S \frac{3}{5}$ has principal curvatures in (-1,1) for small t	
- • •	embedded for anall t	

A little bit of differential geometry Recall I = first fund. form I = second fund, form B = - V N = shape operator Weingarten equation: $\mathbb{T}(X,Y) = \mathbb{T}(B(X),Y)$ Principal arrestures are the ugenvertures of B denoted $\lambda^{+} \ge 0$, $\lambda^{-} \le 0$ S minimal $\lambda^{-} = -\lambda^{+}$ Introduce: $\| I I \|^2 = \operatorname{tr} B^2 = (\lambda^+)^2 + (\lambda^-)^2 = 2(\lambda^+)^2$ Principal curvatures in $I-1, 17 \iff \| I I \|^2 \leq 2$

shape operato	r for Stf	(1,1) -Hessian
$\frac{d}{dt}\Big _{t=0}^{B_{tf}} = Hess^{T}f^{\xi}$	$ff(B^2-ic$	
= Hess f	at pes suc	$\ \mathbb{I}(p) \ ^2 = 2$
(0,2) - Hissian	B~ (1	-1) $B^2 = nd$
$(\nabla^{I} df)(X,Y) = I$	(Hess f(x))	Υ)
$\frac{d}{dt}\Big _{t=0} \lambda_{tf}^{\pm}(p) = (\nabla^{s} d) \lambda_{tf}^{\pm}(p) = (\nabla^{s} d)$	lf)(e [±] (p),e	[±] (P))
(et, e) or the normal f	rame, B(e ^I	$) = \lambda^{\perp} e^{\perp}$

Denete Z= 3pES / III	$(P) \ ^{2} = 2 $
Goal; Construct f E C	a (S) such that;
$(\nabla^{T}df)(e^{\pm}(p),e^{\pm})$	$(p)) = \mp 1$
for eve	ry peZ
Internedicite step: inderstand the	Good we only care about the entires on the dragoned
structure of Z	$\nabla df = \begin{pmatrix} -1 & * \\ * & 1 \end{pmatrix}$

0	F	r	þ	P	•	•	•	· / · · 0	Z	<u>,</u> ,	•	•	Ľ	C	N	۲ ۲	51	S	1	5		o o	6	, , ,	+	•		' ኢ	•	ָ נ	r J	5	Jø	n N	•		,	f	•	•	• •	•	•	•	•	•	•	•	•	•	• •	• •	•
•	•	• •	•	•	•		-	, 7	n	ر م م	ł	e C C		J	•	•		~		e N		1 ())		•	Ĭ	20		v	1	ĪS,	• •	-	ci	, , ,	L	•		51	5		ľ] .	۔ م				2 2 3	ie no	.d S) .	•
•	•	0	•	0	0	•	•	•	•	•	•	0	•		•					0		0	0	0	•	•	•	•	•	•	•	•	• •		•	0	•	•	•	0	• •	•	•	•	•			• V • •			. S	••••	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•						•		•	•	•		•			•			• •		•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•		• •	•
•		•	•	•		•	•	•	•	•		•	•	•						•		•	•	•		•			•			•	• •				•	•	•	•	• •			•		•		•	•	•	• •	• •	
•		•	•	•	•		•	•	•	•		•		•						•		•	•	•	•	•			•			•					•	•	•	•	• •			•		•			•	•		• •	•
•	•	0	0	•		•	0	•	•	•	•	0	•	•						0		0	0	0	0	•	•		•			•			0	0	•	•	0	•	• •		0	•		•	•	•	•		• •	• •	0
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					•	•	•	•	•	•	•	•	•	•	•	•	• •			•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	• •	••••	•
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•					•		•	•	•		•	•		•			• •		•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	• •	• •	•
•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			0		0	0	0	•	•	•	•	•	•		• •		•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	• •	• •	•
•		•	•	•	•	•	•	•	•	•	•	•	•	•						•		•	•	•	•	•	•		•					•	•	•	•	•	•		• •		•	•	•	•	•	•	•	•	• •		•
•	•	0	•	•		•	0	•	•	•	•	0	•	•						0		0	0	0		•		•	•			• •			•	0		•	•	0	• •	0	•	•	•	•	•	•				• •	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•						•	•	0	0	•	•	•	•	•	•	•	•	• •				0	•	•	•	•	• •			•	•	•	•	•		•	• •	••••	•

	H	al	f			ł		ر م		י קי ה	۰ ۲				<i>t</i>	י ר ר	0	и 1	ہ ^ /				С Д Д	+	۲ ۲	/		J \	t			^ 	e		5	•	•		f	6	V			• •	ب		• • •	۰ ۱	5	~	• • •	l N	•	ς γ	2	λ.	r r		f		C	l	5	
	R	se a	с с с	.1		•				}-	1	r			•	•		ς ζ	· • •		•	•	V	5	- ~	i i i	۰ ب	J		۰ م	~	レ	J	•		•	ר 8 נ	י י	, (,	•	f	C		Ċ		*	•	0	(0 0 0 0]	1))		0	0	•		•	
	•	· · ·																	•	1	•	•	•	9		•	•			> >/		-		ĺ	<u>^</u>	, 9 9																										1	•	
•	•		י - ק	9 C	a =	 _	y	•	0	0 0 0		(∕∕	r V			d		• • •	J		2	•				0		•	0	0	Į.	- - -	2	2	•	•	•	•	•			z		•	. (٥	•	•	r J	e	t	È	i A	, ,	لہ	5	م م	₹ √	b	
	•	· ·	۲.	•	•	•	•	•	•	•	•		•	0	•	•		•	0	ん	~	رم م	~	J Z			γ γ	6	r	÷			0	•		•	•	•	•				•	0	•	G		F			J	0	(<u>ن</u>))	•	•	•	•	•		b.	
	•	• •	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•		•			- •					•	•	•		•	•		•	•	•	•				•	•	•	•	•	•			•	•	•	•		2	•	•	•	•	•		•	
•	•	• •	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•		•	•	•		•	•	•		•	•	•		•	•		•	•	•	•				•	•	•	•	•	•			•	•	•	•			•	•	•	•	•		•	
		• •								•									-			•			•	•			•		•					•							•		•						•								•					

dz^2 $z \rightarrow \zeta \int dz$
$\left(\begin{array}{c} & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$
z_{21}
$\varphi(z) = \pm z + c$ healf - translation
~ Well-defined Euclideen metric on S13q=0} Idz12
(cone singularitées at zeros of q)

In such a chart Z=X-iy,	
$I = e^{2y} (dx^2 + dy^2)$	$(\Lambda \circ)$
$II = Re(dz^2) = dx^2 - dy^2 \sim$	$\left(0 - 1 \right)$
$B = I^{-1} I \sim \begin{pmatrix} e^{-2u} & 0 \\ 0 & -e^{-2u} \end{pmatrix}$	Rmk uzo
$\langle 0 - e^{-t} \rangle$	& Z= zu=0}
and a solves the Games' equation	
$K_I = -1 + det B$	· · · · · · · · · · · · · · · · · · ·
$-e^{-2u}\Delta u = -1-e^{-4u}$	· · · · · · · · · · · · · · · · · · ·
	-Gardon egn
	• • • • • • • • • • • • • • • • • • •

Revisited good Construct f e C°(S) such that, around Z and in "flat" coordinantes Z $f_{xx} = -1 \qquad f_{yy} = 1$ Rink we can use the Endudean Hessian at $p \in Z$ $\nabla^2 df = D^2 f$ $\prod_{ij}^{k}(p) = 0$ Enclidean Riemann'an Hessian Hessian

Prop Z consists of a union of
(finitely many) points and simple closed curves.
$P_{f}: Z = \frac{3}{11} I ^2 = 2\frac{3}{15}$ is the level set
of an anerlythe function
\Rightarrow $Z \approx$ \bullet /
Lojasien 275 locally isolated arrive vertex
of an analytic function $ \begin{array}{c} \Rightarrow & Z \\ \text{Lejasienvicits locally isolated} \\ \text{Theorem} \\ \hline \\ \hline \\ But \\ Z = \frac{3}{4}u = 0\frac{3}{2} \leq \frac{3}{2} du = 0\frac{3}{2} \\ \text{and} \\ \int u = 2\cosh(2u) > 0 \Rightarrow either \\ \hline \\ \\ \end{array} $
and $\Delta u = 2\cosh(2u) > 0 \implies either uxx>> or uyy>0 \implies Z$ is contained in a curve $(u_x=0 \text{ or } u_y=0)$

Construction of f: divide into cases
0) pEZ is an isolated paint
$\begin{cases} \cdot P \\ f := -\frac{x^2 + y^2}{z} \\ z \\ \end{cases} D^2 f = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$
$\begin{cases} \cdot f \\ f := -\frac{x^2 + g}{2} \qquad D^2 f = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

Interesting situation: YCZ simple clesed curve
subcases according to the holonomy of J:
5 30=03 has a harlf-translation structure
$ \sum_{i=1}^{n} dev: S \setminus 2q = 0 2 \longrightarrow C $ $ p: \pi_1(S \setminus 2q = 0 2) \longrightarrow 2 \longrightarrow 12 + C^2 $ $ holonomy $
ρ: π ₁ (S) 3q=02) -> 3ZH ±Z+C3
holonomy
$\tilde{\gamma}: \mathbb{R} \longrightarrow \mathbb{C}$
$\widetilde{\delta}(t+1) = \rho(\delta)\widetilde{\delta}(t)$

1) $e(s) = id \iff y$ is covered by a single chart! , c $= - \frac{2}{4} \frac{2}{3}$ 2 π -votation avound $\frac{c}{2}$ (can assume c=0) 2) e(x)(z) = -z + c) • 0 { ; m d $-x^{2}+y^{2}$ f(-z) = f(z) $f = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

3) e(x)(z) = z + cneed to find f periodiz 242+0 im g a a a a a Warning: if & is a howfountal (vertical) line, then it is impossible to find f perioduc with $f_{xx} < O(f_{yy} > O)$

Luckily	this never	happens	•	
Lemme ;	A smooth	curve f	: (a,b) -	FCS
is never	a guodesic	for the	Encludean	metorc
		for the f	wat fund.	form)
· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	at pEZ,	$f_{j}(p) = 0$	\mathcal{O}
Sex later	for a sketch	· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · ·

Go back to case 3. Build f as follows, $f = -(x - x_0)^2 + (y - y_0)^2$ box. 7= (1) $c = (x_0, y_0)$ $D^{2}_{f} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ Define f through its Hesslan f = -x + y'Wont: $D^{2}f = \begin{pmatrix} -1 & 3(x) \\ 3(x) & 1 \end{pmatrix}$ $D^2 f = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$

 $D^{2}f = (-1 + (y - h(x))z'(x) - z(x))$ impose 1 1 $z \in \mathcal{C}^{\infty}((o, \delta))$ Important: graduat has to increase by (-xo, yo)

Explicity, we need; $\int_{3}^{0} (x) dx = 30$ 3(x)h'(x)dx =-×0 Find 3 E Co ((0,5)) sortisfying these conditions The map $C_{o}((0,\delta)) \longrightarrow \mathbb{R}^{2}$ ite map $-\delta(x)$. $\overline{2}$ $\overline{5}$ $\overline{5$

By contradiction,	if dim (imag	$e = 1$, then $\exists \lambda$
By contradiction, $\int_{3}^{3}(x)h'(x)dx =$	$\lambda \int_{\frac{2}{3}}^{\circ} dx$	$\forall z \in C_{0}^{\infty}((0, \delta))$
$ \implies \int_{0}^{0} \frac{5}{3(x)} (h'(x)) $	· · · · · · · · · · · · · · ·	
$\implies h'(x) \equiv \lambda$	⇒ X is	a line.
	. .	

Sketch of the proof of the Lemma; if is a line, then S should be a minuned surface with a 1-parameter family of symmetries $\Delta u = 2 \cosh(2u)$ $\tilde{\mathbf{z}}$ $\left. h \right|_{2 \times = 0} = 0$ $du|_{2\times = 0} = 0$ vertical symmetry by translation (Cauchy - Konalevskaya)

horocycle Picture: $|H|^{3}$ this minued surface is parabelie praviant and has no paints where I = 0while S lifted from S must have zeros of I (=> zeros of 9)