· · · · · · · · ·	
QVA	SI-FUCHSIAN, ALMOST-FUCHSIAN
· · · · · · · · · · · ·	NEARLY-FUCHSIAN MANIFOLDS
· · · · · · · · ·	
\$	shanghai Institute for Mathematics and Interdisciplinary Sciences
· · · · · · · ·	
· · · · · · · · ·	Lecture I, 30/06/2025
· · · · · · · ·	

A Riemannian manifold (Mich) is hyperboliz
if h has sectional curvature $\equiv -1$.
If h is noveover complete, then $M \cong H^{\prime}/p$
r < Ison (H1") torsion - free, discrete
$\Gamma \equiv \pi_1 M$ (a)
We will focus on hyp. man'folds M= TxIR home.
Z= closed arbeited surface of genus ≥ 2

Theorem (Kahn-Markonic 2012) If M' is closed and hyperbolic, then $\pi_{1}M$ contains $\pi_{1}Z$, $\Sigma = closed$ oriented surface of genus ≥ 2 many ~ g 22 => the covering M_P, M such that $P_* \pi_1 \hat{M} = G \equiv \pi_1 Z$, then $\hat{M} \simeq Z \times R$ diffeo

Det (Mª=Z×R, h) is quasi-Fuchstan if M contains à compact geodesically convex subset. Ex "Fuchsian" manufolds r ∠ PSZ2R < PSL2¢ I som H2 Isom H

int $\begin{cases} \rho: \pi_1 \Sigma \rightarrow \text{Isom HI}^3 \\ \text{discrete faith ful} \end{cases} = \\ \begin{cases} \rho = \frac{3}{4} \rho \quad \text{quasi-Fuch sian} \\ \text{conj.} \end{cases}$ i.e. $H_1^3 \\ \rho(\pi_1 \Sigma)$ is QP. 12g - 12Use miniment surfaces

locally length minim' wag Idea: KL O find a (unique) geodesic dim = 2 a a ja representative of a closed curve in the hometopy daws locally area minim'arizing dim = 3 look for a minimal 6.00 representative of a closed surface in the homotopy class

Def An embedded surface SC(M ³ , h) is	•
minimal if for every smooth variation st	•
(compartly supported in KCCM) So=S	•
$\frac{d}{dt} \Big _{t=0}^{Area} \left(\frac{S_{t} n K}{t} \right) = 0 \qquad t \in \mathbb{C}^{\infty(S)} \qquad TN \qquad T$	•
$\iff H:=tr_{I}I=0$	•
I = first fund, form man curvature I = cornad fund, form (e, c) I-orthonormal fram	د
$II = second fund, form II = second fund, form H = II (e1, e2) + II (e2, e2) II (X,Y) = < \nabla_X^M Y, N > H = II (e1, e1) + II (e2, e2)$	

· Sacks-Unlanbeck Schoen-Yan ~ 801 If (M=Z×IR, h) is quasi-Fuchsdan, then M contains a closed minimal surface p hometopic to Z×3×3. 6-0 · Anderson 186 Huang - Wang 115 The minimal surface is not unique in general,

Def (Ma IxIR, h) complete, hyperbolic is
[weakly] almost-Fuchsian if M contains a closed
minimal curface homotopic to Z×3×3
with principal currentures in (-1,1)
21 L-1,1]
eigenvalues of III
concretely, one can find an I-orthonormal frame such that d:= II (e, e,), μ := II (e, ez)
minimal $\lambda = -\mu \mathbb{I}(e_1, e_2) = \mathbb{I}(e_2, e_1) = 0$

Unlunbeck's observations (1983) $\left(\begin{array}{c} 0 \\ \end{array} \right)$ d 1) for M~Z×IR, AF ⇒ QF d Question: does WAF imply QF? Auswer will be YES 2) for M=Z×R WAF => undqueness of the minimal surface in the honotopy class of Zx } * }

The results (with M.T. Nguyun & J.M. Schlenker)
"Confecture" (~ 2000's)
In the definition of AF, one can remove the adjective "minimal"
Det (M=Z×IR, h) complete, hyperbolic is nearly-Fuchsian if it contains a closed
surface with principal curvatures in (-1,1)
" <u>Conjecture</u> " NF (=>) AF

If (M≃	(Nguyen - Schlenke Z×IR, h) is ne is nearly - Fuc	akly almos	
	a heighborhood		

L'Inter today openness - Davalo 124 $AF \xrightarrow{\bigstar} WAF \xrightarrow{\bigstar} NF \xrightarrow{\bigstar} QF$ Corollary 1 Every WAF manifold is QF. Corollary 2 There are nearly - Fuchsian manifolds that are not almost-Fuchsian

Next: There exist weakly almost - Fuchsian manifolds that are not almost - Fuchsian 3) Back to Uhlenbeck; Parametrization by holomorphic quadratic differentials Fact If SCH' is a minumal surface (I,I)then I = Re(q), for $q \in X$ -holomorphic quadratic differential X = [I] conformal class

What is a HQD? $q \in H^{\circ}(X, K^2)$ $q = q(z) dz^2$ Z= X + 1 y $I = e^{2n} \left(dx^2 + dy^2 \right)$ $q = (a + ib) dz^{2}$ = (a + ib)(dx² - dy² + 2idxdy) $Re(q) = \begin{pmatrix} a & -b \\ -b & -a \end{pmatrix}$ is symmetric and traceless Moreover, Codazzi equation () CR equations for 9

The map $(I,I) \longrightarrow (X,q)$ $AF(\Sigma) \longrightarrow T^*G(\Sigma)$ is injective (diffeo outo its image) Bronstein - Smith 124 The image of this map is convex in every fiber!

How to deal with this problem? For (X, q) fixed, we use to construct (I,I) satisfying the Gauss-Codath equations I = eⁿho (Uniformitation Theorem) I = Re(q)Need to solve Gamss' equation for u: $K_{I} = -1 + det_{I} \longrightarrow e^{-2\eta} (-1 - \Delta u) = -1 - e^{4\eta} ||q||_{h_{\eta}}^{2}$ $\Delta u = -1 + e^{2u} + e^{-2u} \|q\|_{h_{e}}^{2}$

Fix $q \in T_x^* \mathcal{T}(\Sigma)$:	$H^{\circ}(X, K_{X}^{2})$	Look ray	ct IR,	iq	
II ullou	The second secon		· · · · · ·		
J AF Fuchsiqu for	pinel time AF solutions	tq		

"Conjecture": was motivated from Geometric Flows
Ben Andrews 'ICM paper from 2002:
Geometric flows in B ³ that evolve by functions of principal curvatures
$\frac{d}{dt}\Big _{t=t_{o}} L_{t} = (avetan \lambda_{t}, t avetan \mu_{t}) N_{t_{o}} \qquad 1^{N_{t_{o}}} L_{t}$ with good properties
with good properties
evolution of the Games man in S ² x S ² by mean currenture flow

Analogous flow in Ht ³ :
$\frac{d}{dt}\Big _{t=t_{o}} L_{t} = \left(\operatorname{arctanh}_{t} + \operatorname{arctanh}_{y_{t}} \right) N_{t_{o}}$
Problem: only defined if $\lambda_{\mu} \in (-1, 1)$ evolution of the Gauss map by mean currenture flow
it in a powa-Kähler manifold As long as the flow in a powa-Kähler manifold exists, awatanh & + awatanh decays exponentially
So, long time estature => for t= a arctach & + arctanhy=0 => $\lambda = -\mu$