· · · · · · · · · · · · · · · · · · ·	•
· · · · · · · · · · · · · · · · · · ·	•
LECTURE 6	•
	•
	•
References:	•
 O Guichard and A. Wienhard, Anosa representations: domains of discontinuity and applications, Invent, Math. 190 (2) 2012 B. Collier, N. Theloran, J. Toulisse, The geometry of maximal reps of surface groups into SO(2,n), Dike Math. J. 168(15), 2019 	· · ·
· A. Seppi, G. Smith J. Toulisse, On complete maximal and manifolds in pseudo-hyperbolic space, Section 9, Preprint (ArXiv) 2023	•

let p1921 and	· ·	• •	• •		• •
Isot (R ^{P19+1}) = { maximally fatropic subspaces } of IR ^{P19+1}		· · ·	· · ·	· · ·	· · ·
If V & Isot (IR ^{1,9+1}), then dim V = min & p, 9+1}.		• •			• •
Indeed, write $\mathbb{R}^{p+q+1} = \mathbb{R}^p \oplus \mathbb{R}^{q+1}$ an orthogonal decomposition	• •	• •			· ·
• if $q_{12}p_1$ then $V = qraph(L: \mathbb{R}^2 \rightarrow \mathbb{R}^{q^{+1}})$	· ·	• •	· ·	• •	· ·
L linear isometry onto its image if p2q-1, then V= grouph (M: Rq+1 - RP)	· ·	· ·	· ·	• • •	· ·
M linear isometry outs its mage	· ·	• •	· ·	• • •	· ·
	· · ·	• •		• •	· ·

Theorem (Guidhard-Wienhard 12) Let Γ be a hyperbolic group, and let $P: \Gamma \rightarrow PO(P, q+1)$ a P_1 -Anosov representation (\Leftrightarrow (IHP ¹⁹ .v HP ^{-4,1+1})-convex-cocompact).
Let $\Lambda_{p} = \text{provincel limit set of } p$ and $\Lambda_{p} := \xi \vee \epsilon \operatorname{Isot}(\mathbb{R}^{p,1^{+1}}) \mid \mathbb{P}(\vee) \cap \Lambda = \emptyset \xi$,
The $\rho(\Gamma) \wedge \mathcal{D}_{\rho}$ properly discontinuously and cocompactly. Question: What is the topology of $\mathcal{D}_{\rho}(\Gamma)$?
Suppose from now on that 25 ~ Sprit and e is positive P1-Anosov

Prop If $p \ge q+1$, then $\mathcal{N}_p = \emptyset$. $\Leftrightarrow \forall V : P(V) \cap \Lambda \neq \emptyset$
Pf: let ñ be a lift to 2 HPig of Ac20 HPig.
Then $\tilde{\Lambda} = \operatorname{graph}(f; S^{p-1} \rightarrow S^{q}) + 1 - \operatorname{Hpsdrift} \operatorname{map}_{q}$
in (f) does not contain antipodal points.
Moreover, P(V) n 2, HP19 = graph (M); S9 - SP-1)
for $M _{\$^{9}}$; $\$^{9} \rightarrow J := M(\$^{9})$ isometry
Consider $\phi := M \circ f _{\mathcal{G}} : \mathcal{J} \longrightarrow \mathcal{J}$, which is 1-Wpschitz
and im (\$) does not contain antipodal points.
$\Rightarrow \phi$ has a fixed peint x_o .
· · · · · · · · · · · · · · · · · · ·

This will imply: $\Rightarrow [x_n f(x_n)] = [M(f(x_n)), f(x_n)] \in \Lambda \cap \widetilde{P}(V)$
$\epsilon \tilde{\Lambda} = \tilde{P(V)}$
To show & has a fixed portunt;
· deg(\$)=0: \$\$ can be continuously deformed to a constant map. because in(\$) C on open humisphere.
• deg $(\phi) = \pm 1$ if ϕ has no fixed point: if $\phi(x) \neq x \forall x \in \mathcal{J}$ then ϕ can be contributing deformed to the antipodal map α $\Rightarrow deg(\phi) = deg(\alpha) = \pm 1$.

So me only consider 92p. We construct a prequisiont map Claim Such × exists and is migne $\pi: \mathcal{D}_{p} \longrightarrow \mathbb{Z} = \varrho(\Gamma) - invariant spacelike submanifold$ π(V):= the unique × EZ^PcHP^{iq} such that VC×¹ < Then $\pi^{-1}(x) = \operatorname{Isot}(x^{\perp}) = \frac{2}{3} \operatorname{subspaces} \operatorname{of} x^{\perp}$ \cong Isot $(\mathbb{R}^{p_1 q}) \cong \mathcal{V}_{p_1 q}$ Stiefel mansfold Vp, q = 2 (e1, -, ep) E (IR)P | < e; ej> = 5; }

Then $\Sigma_{\rho/e(\Gamma)}$ is a fiber bundle over $\mathbb{Z}/e(\Gamma)$
with fiber $V_{p_1q_1}$.
Runk Np19 is connected unless p=9 (Np1p=0(p))
$\Rightarrow \Omega_{p/p(\Gamma)}$ is convected values $p=q$ and
NZ/e(r) admits a reduction from an O(p)-bundle to an SO(p)-bundle
i.e. the Stiefel-Whitney class vanishes.
· · · · · · · · · · · · · · · · · · ·

It remains to show	$_{\rm v}$ the <u>claim</u> .	
$Lt W = V^{\perp}.$ The	er W is a degenerate subspace of	IR P19+1
d'm V = p =	\Rightarrow dim $W = q \neq 1 > p$	· · · · · · · · · · · · · ·
$W = V^{\perp} \supset V$	$V = \ker(\langle \cdot, \cdot \rangle _{W})$	· · · · · · · · · · · · ·
W does not con-	tain any positive definite line	· · · · · · · · · · · · · ·