LECTURE 5 Reference: J. Beyrer and F. Rassel, 1419- convex-cocompactness and higher higher Terchmühler spaces, Preprint (ArXiv) 2023

We will discuss several applications (consequences of;
Corollory (S Smith - Toulisse '23)
Let Γ be a hyperbolic group with $\Im \Gamma \simeq S^{p-1}$, and let $p: \Gamma \rightarrow PO(p, q+1)$ be a $1H^{p,q}$ -convex-cocompart representation,
Then there exists a $p(\Gamma)$ -invariant spacelike submanifold $\Sigma^{P}C H P^{PP}$ on which the action of $p(\Gamma)$ is properly discontinuous and cocompact.
[I is constructed as the unique complete meximal] submanifold with $Q_p \Sigma = provided limit set.]$

I. About the hypotheses on I	· · · · · · · · · · · · ·
Let I be hyperbolic, torsion-free, DIZSP-2.	· · · · · · · · · · · · ·
Theorem (Bartels - Linde-Weinberger 10)	· · · · · · · · · · · · ·
If $p \ge 6$, then $\Gamma \cong \pi_1 M$ for	· · · · · · · · · · · ·
$M = topological closed p-manifold with \widetilde{M} \cong IR^{p}$	· ·
Corollary (SST '23) If $P: \Gamma \rightarrow PO(p,q+1)$ is HP^{19} - convex - cocompact,) froof; M. Z.
then $\Gamma \cong \pi_1 M$ for \sim	$M:=\frac{2}{e(\Gamma)}$
$M = shouth dosed p-mentifold with \tilde{M} \cong 1R^{p}$	$\left(\begin{array}{c} e(1) n2 \\ is free \end{array}\right)$

$\partial \Gamma \simeq 5^{4\mu - 4}$	22, there such that	esists I hyper	bolse, torsion-free, norphy: to the Ty old.	 . .
Corollary (SST Fac above	does not	adunt any H	19 - Convex - Coco inpart	· · · · · · · · · · · · · · · · · · ·
representation	for any	921.	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · ·				• •
· · · · · · · · · · · · · · · ·				• •
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	• •
			· ·	· · ·
	· · · · · · · · · · · ·			· · ·
	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · <			· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · <td< td=""><td>· ·</td><td></td><td>· ·</td></td<>	· ·		· ·
	··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ·	· ·	1 1	· · · · · · · · · · · · · · · · · · ·

II. Curvature properties Question; What can we say on I hence on M and I' Labourie-Toulisse : if p=2, then $-1 \leq K_{\Sigma} \leq 0$ and if $\exists x \mid K_{\Sigma}(x) = 0$ then $K_{\Sigma} = 0$ $\Rightarrow \Sigma$ is a Barbot surface in $\mathbb{H}^{2,1} \subset \mathbb{H}^{2,9}$ Conjecture (?) I has non-positive sectional currenture for any p This would imply ∏ ≅ π, (non-positively curved closed smooth manifold)

Moriani - Trebecchil For any pig, -p(p-1) ≤ Scal E ≤ O and $Scal_{\Sigma}(x) = 0 \implies Scal_{\Sigma} \equiv 0$ classified R_{mk} $S_{col} = -p(p-1) + || II ||^2$

	Close	d vess	۰f	41 ^{P,9}	- Con	ver-	Cocon	rpact	ripro	sento	vNor	~\$.	• •	· · ·
Theor	em (Beyrer	- Ka	ssel 12	3)	· · ·	· · · · ·	· · · · · ·	· · · · ·	· · ·	· · · · ·	· · ·	· ·	· · · ·
				21.		· · ·	· · · · ·	· · · · · ·	· · · · ·	· · ·	· · · · ·		• •	· · ·
						p v	th G)Γ ⊵	S ^{P-1}	Th	en		• •	· · ·
	ζ Η ^{'n ¶}	convex of	coc p: [fim:	onnpart → PO te ke	rep (p,9 whe	presen +1)	tation	s} < +	ten 1)(p1°	(+1)) 	· · · ·
								comp			· · · ·	• • •	• •	• • •
· · · · ·		· · · ·	· · ·	· · · · · ·	· · ·	· · ·	· · · · ·	· · · · · ·	· · · ·	• • •	· · · · ·		• •	· · ·
										0 0 0		• • •	0 0	
									• • • •					

Rink The theorem does not hold if DT ~ Sk-1, k<p. Indeed, one can take M a closed hyperbolic manufold admitting a totally geoderic closed sepawatting hypersurface N $M \setminus N = M_1 \cup M_2$ e.g. if k=2, M= closed surface, N= simple closed geodesic $M_1 (m) M_2 M_2$ Consider :

Idee: construct fo as p"bent" along N of an ongle D. (Johnson-Millson)
$\theta = 0$ $\theta = \Sigma$ $\theta \to \pi$ (magnetilies $\pi M = \pi M \times \pi M_0$ θ of the around
Concretely, $\pi_1 M = \pi_1 M_1 * \pi_1 M_2$ $R_0 = rotation around \int \rho(x) = \int f(x) = M$
$ \begin{aligned} \rho(\xi) &:= \int_{R_0}^{R_0(\xi)} \int_{R_0}^{-1} & \text{if } \xi \in \pi_1 M_1 \\ R_0 e(\xi) R_0^{-1} & \text{if } \xi \in \pi_1 M_2 \end{aligned} \qquad $
Well-defined since Ro commutes with e(TIN)
For Q=IT, the representation fails to be discrete and faithful.

Examples of HI ^{PIA} -convex-cocompact components
. If M ^P is closed hyperbolic and contains a totally geodesic dosed separating hypersurface N, then the component of
$ f: \pi_1 M \xrightarrow{hol} O(p, 1) \longrightarrow PO(p, q+1) \left(\frac{1}{hol} \right) $
admits Zawiski dense representations.
"non-trivial higher higher Teschmiller space"

Iden: bending as before If 7=2, $P_{t}(\chi) := \int_{R_{t}}^{P(\chi)} if \chi \in \pi_{1}M_{1}$ $R_{t}e(\chi)R_{t}^{-1} if \chi \in \pi_{1}M_{2}$ | sinht | / cosht | for Rt~ id p For higher 9>1 sinht Tcosht need q totally geodesic hypersurfaces. / IH P.1 H

• M veed not be hyperbolie:
-> Mondowr-Tholozen-Schlenber '23
M ^P = Gremor - Thurston mon'fold (non-hyperbolie if p>3)
$p: T_1 M \longrightarrow PO(p, 2) H^{p_1} - convex - coepinpaet.$
-> Marquis-lee $\Gamma = (\text{finite-index subgroup of}) = (\text{finite-index subgroup of}) = (\text{oxeter group lattice})$ $\rho; \Gamma = PO(\rho, Z) H ^{p_1^n} - \text{convex-cocompact}$
• Marquis-lee; examples of Γ , $\Im\Gamma = S^{P-1}$, admitting a 1H ^{P19} -convex. cocompact representation for $q=2$ but not for $q=0, 1$.

Outline of the strategy of Byrer-Kassel Suppose Ph -> Po where each Ph is HIP19- convex - cocompact. We want to show that so too is Poo. A) Each proserves a complete maximal submentifold In By the dichotomy, In -> In where In is complete maximal, or degenerate "neakly spacelike" B) In any case, por(T) acts properly discontinuously and cocompactly on I (uses the fact that I C I (20 I))

C) If p: [- PO(p19+1) is discrete and preserves a properly unbedded (weakly) spacelike I with III (Do I), then TFAE: i) [is hyperbolic ii) $\forall x, y \in \mathcal{D}_{2} \Sigma$ $\langle x, y \rangle \neq 0$ iii) $\rho(\Gamma)$ is $H^{p_{1}q}$ convex- cocompart. satisfied by Za as in A), ar by any I spacelike Rule On the Barbot surface, there are actions of $\Gamma \cong \mathbb{Z}^2$. ($\cong \mathbb{R}^2$)

Corollary (BR+SST) let I be a hyperbolic group with DI ~ Sp-1. Then p: [-> Po(p,q+1) is 1Htpiq-convex-cocompart =) p(r) acts properly discontinuously and cocompactly on a complete spacelike submontfold I'CHHPiq. can odd "maximal"