	LECTU	RE 4	•
	. .		•
Reference submandfold	A. Seppi, G. Smith, J. ds in pseudo-hyperbolic	Touhisse, On complete maximal space, Preprint (ArXiv) 2023	•

Goal; sketch of the proof of the following theorem;	
Theorem (SST) Let $\Lambda < \mathcal{P}_{\infty} \mathbb{H}^{P_{1}^{n}}$ be a non-vegative $(p-1)$ -sphere. Then there exists a unique complete maximal subvuomifold $\Sigma^{P} \subset \mathbb{H}^{P_{1}^{n}}$ such that $\mathcal{Q}_{\infty} \Sigma = \Lambda$.	
Moreover, \overline{Z} is contained in the convex hull $\mathcal{C}(\Lambda)$.	

Global strategy for existence :	continuity method
Construct {A_t}te[0,1] a continuous non-vegetive (p-1)-spheres and the	family of at Ao= Qo (totally geodesic 24)
let J:={ t & [0,1]] J I complete	mersthal submenifold 2, Z= 1;
Then $J \neq \phi$ because $O \in J$.	· ·
Want to prove that J is clo	sed and open.
eastur	r Novder

Proof of "existence" part he need to work with another model of IHPig; Define $\varphi: \mathbb{B}^{P} \times \mathbb{S}^{q} \longrightarrow \widehat{\mathbb{H}}^{P_{1}q}$ $n \qquad n$ $\mathbb{R}^{P} \qquad \mathbb{R}^{q+1} \qquad \mathbb{R}^{P} \oplus \mathbb{R}^{q+1}$ $\mathbb{R}^{P} \oplus \mathbb{R}^{q+1} \qquad \mathbb{R}^{P} \oplus \mathbb{R}^{q+1}$ liduli Then: $4^{*}g_{H1}^{2}(9^{-}) = (\frac{4^{2}g_{BP}}{(1-||u||^{2})^{2}} - (\frac{1+||u||^{2}}{(1-||u||^{2})}g_{S9}^{2}$ $\varphi(B^{P},*) \simeq H^{P}$ $= \left(\frac{1+\|\mathbf{u}\|^2}{1-\|\mathbf{u}\|^2}\right)^2 \left(g_{\mathbf{g}_{\mathbf{f}}}^p - g_{\mathbf{g}_{\mathbf{g}}}\right)$ $= f^2(g_{sp} - g_{sq})$ φ(0, 5⁹) = - 5⁹

Consequences.
• A spacelike enhancefold $\Sigma^{P} \subset \widehat{H}^{P, q}$ is locally the graph of $f: S^{P}_{+} \longrightarrow S^{q}_{-} df < 1$
Rf: being spacelike only depends on the conformal dass of the ambient metric
• A complete cubinantfold $\Sigma^{P} \subset \widehat{H}^{P, 9}$ is globally the graph of $f: S^{P}_{+} \longrightarrow S^{9}$, $\ df\ < 1$
Pf: TTIZ: Z - IHP is a local diffes and increases distances
$\implies T has the path lifting property \implies T is a covering map \implies T is a difference philsen$

Moreover	the map y	extends to	, the bound	day:		· · ·
Qy: \$	$P^{-1} \times S^{9} \longrightarrow$	O HP19				· · · ·
de (n	w) = (u, w M	$\mathcal{F} \mathbb{R}^{\mathbb{R}^{9^{+1}}}$				· · ·
RP	$\mathbb{R}^{9^{+1}}$					· · · ·
Like for	14", Oo 14Pia	has a conf	ormal pseu	do - Riem	ann an	· · ·
structure	7 signathre	(p-1,9) prese	rved by th	~ growp of	- isinit	es,
Under Dy,	the conformal	metric of	2 HP19	is given	Lj	· · ·
· · · · · · · · · · ·	[]g_gp-1	- 959]	· · · · · · · · · ·	· · · · · · · · · ·	· · · · · · ·	• • •

Concequerces:
let A c 20 1H ^{P19} be a subset homeomorphic to S ^{P-1} . TFAE:
i) $\Lambda \subset \mathcal{D}_{\infty} HP^{19}$ is a non-negative (p-1)-sphere ii) Λ admits a lift $\tilde{\Lambda} \subset \mathcal{D}_{\infty} HP^{19}$ and that $f_{X_1Y} \in \tilde{\Lambda} < X_1Y > \leq 0$
iii) A admits a lift $\tilde{\Lambda} = graph (f: S^{p-1} - S^q)$ f = 1 - Lipsdutz, in (f) does not contain ontopoded points
iv) A admits a lift $\tilde{\Lambda} = \operatorname{graph}(f: \mathbb{S}^{p^{-1}} \longrightarrow \mathbb{S}^{q})$ $f = 1 - \operatorname{Lipschitz}, $ such that $f(-x) \neq f(x) \forall x \in \mathbb{S}^{p^{-1}}$
in) (=) ini); $<(p, f(p))(q, f(q)) > = < p_1 q > - < f(p), f(q) > =$ = cos d(p_1 q) - cos d(f(p), f(q)) < 0 (=) d(f(p), f(q)) < d(p_1 q)

· Deforming A Now, giver A = graph (f: 5^{P-2} -> S⁹), we want to deform it continuously to No = graph (constant map) Fact: If f: 5^{p-1} -> 5^q is 1-hipschift and Im (f) does not contain anthpodal paints, then in (F) is contained in an open hemisphere. Then we can deform f to the map identically equal to the center C of the hemisphere, ----f. (x) = geodesic between f(x) and C parametersed at constant speed Vt E[0, 1], ft is 1- Lipsdritz.

· Closedness of J	
Let Zn be a sequence of complete maximal	onburchiefolds of HP19
let $\widetilde{\Lambda}_n := \partial_{\infty} \widetilde{\Sigma}_n$. Up to a subsequence we a $\widetilde{\Sigma}_n \longrightarrow \widetilde{\Sigma}_n$ and $\widetilde{\Lambda}_n \longrightarrow \widetilde{\Lambda}_\infty$	Ascoli-Arzela for 1-Liosditz maps
in the Hamsdorff topology.	
Moreover, $\Sigma_{a} = q_{i} (f : \mathbb{S}_{+}^{p} \rightarrow \mathbb{S}^{q})$ 2 $\sum_{i=1}^{n} (f : \mathbb{S}_{+}^{p} \rightarrow \mathbb{S}^{q})$ 2 (1 - hips)	idr72
$\Lambda_{\infty} = \operatorname{gr}\left(\mathcal{A}_{f}: \mathbb{S}^{T} \to \mathbb{S}^{T}\right) \int \mathcal{O}_{\infty} \Sigma_{\infty} = \widetilde{\Lambda}_{\infty}.$	

Then we have the following didno trany; 1) if the contains entipodal points, then I to is a hipschitt and manifold foliated by lightlike geodesics 2) if The does not contain ontipodal points, then I to is a complete maximal anomanifold and the convergence is actually e^{∞} . So, if $t_n \in J$ (i.e. there exists Σ_{t_n} with $\partial_{\infty} \Sigma_{t_n} = \tilde{\Lambda}_{t_n}$), $t_n \nearrow \tilde{t}$, since $\Lambda_{\tilde{t}}$ is a non-negative (p-1)-sphere, Not does not contain antipodal points, and we are in case 2.

Comments on case 1: If f_{∞} : $\mathbb{S}^{P^{-1}}$ \mathbb{S}^{9} is 1-Wpcdut+ and $f_{\infty}(-\infty) = -f_{\infty}(\infty)$, then for (geodesic connecting xo and -xo) = geodesic connecting f(xo) and -f(xo) f_{∞} (×0) $-f(x_0)$ So foo is isometric when restricted to these geodesics is graph (foo) is folloated by complete lightlike geodesics.

Connects on case 2: we use · A theorem of Ishihara giving a uniform bound on IIII far any complete mand ned p-subman fold ~ Ascoli-Arzelà type argument assuming To Zn - spacelike p-subspace of Tpo HHP19 · Elliptic regularity to infer C° - Convergence · A lie - theoretic argument to show that, if No does not contain antipodal points, then Tp. In cannot become degenerate in the limit.

· Openness of J $\frac{\text{Thm}}{\text{Let}} \left(\widetilde{\Lambda}_{t} \right)_{t \in \{-\xi, \xi\}} \text{ be a snooth ly varying family of snooth spacelike (p-1) - spheres in <math>\mathcal{D}_{\infty} \widetilde{H}_{t}^{p,q}$ If there exists a complete maximal submanifold Z^P_c Ht^{Pi9} with 2₀ Z₀ = Ã, then, up to restricting E, there exists a smooth family (Zt) te(-E, 5) of complete maximal submar folds with $2 \Sigma_t = \widetilde{\Lambda}_+$. So, we apply continuity method only to A smooth. The general case follows by approximating A by smooth spheres + dichotomy.

· Proof of "uniquenecs" part	· · · · · · · · · · · · ·	· · · · · · · · · · · · ·
Suppose Z1, Z2 are two complete me	wind sub man."	folds in HP19
with $\mathcal{D}_{0} \mathcal{I}_{1} = \mathcal{D}_{0} \mathcal{I}_{2}$.	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·
Consider the function	· · · · · · · · · · · · ·	· · · · · · · · · · · · · ·
$\Sigma_1 \times \mathbb{Z}_2 \xrightarrow{f} \mathbb{R}$	· · · · · · · · · · · · ·	· · · · · · · · · · · · · ·
(×18) ~ <×12>		· · · · · · · · · · · · · · ·
If $\Sigma_1 \neq \Sigma_2$, then supf $\in (-1,0]$	· · · · · · · · · · · · ·	· · · · · · · · · · · · ·
. using dichotomy reduce to the case 1	where the sup is	5 attained
• at the maximum, Hessf ≤ 0		
~ contradiction a	sing maximal con	idition

· Proof of "moreover" part
Goven two vector fields V,W, we have (in IR ^{P+9+1})
$(\mathcal{D}_{\mathcal{V}}\mathcal{W})_{\mathcal{X}} = (\nabla_{\mathcal{V}}\mathcal{W})_{\mathcal{X}} + \langle \mathcal{V}_{\mathcal{V}}\mathcal{W} \rangle_{\mathcal{X}}$
$= (\nabla^{Z}_{V}W)_{X} + \mathbb{I}(V,W) + \langle V,W \rangle_{\mathcal{X}}$
Now, let y: RP+9+1 be a linear form such that 4/2>0.
We have $H_{LSS}^{T}(\varphi _{T})(V,V) = \frac{d^{2}}{dt^{2}}\Big _{t=0} \varphi(\chi(t_{T})) = \varphi(\frac{d^{2}}{dt^{2}}\Big _{t=0} \chi(t_{T}))$
$y \text{ geodesic}, \chi(o) = x, \chi'(o) = V \qquad \qquad$

Taking the trace wit I,	jei? arthonormal berris for I
$(\Delta^{\mathbb{Z}}\varphi)(x) = \sum_{i=1}^{p} \operatorname{Hess}^{\mathbb{Z}}(\varphi _{2})(e_{i},e_{i})$	
$= \varphi\left(\sum_{i=1}^{P} \mathbb{I}(e_i, e_i)\right) +$	$\sum_{i=1}^{P} \langle e_i, e_i \rangle \varphi(x) = p \varphi(x)$
= 0	
So if $\varphi _{\Sigma} > 0$, then $\varphi _{\Sigma} > 0$;	. .
if $\varphi(x) < 0$ for some x_1 then φ	has a regative minimum Xmin
$\Rightarrow (\Delta^{2} \varphi)(\times \min) = p$	y (×min) #
23 	20