LECTURE 3	· · · ·
LECTURE 3	• • •
LECTURE 3	
LECTURE 3	• • •
LECTURE 3	
LECTURE 3	
IFCTURF	

Goal of the lecture Corollory (S. - Smith - Toulisse '23) Let Γ be a hyperbolic group with $\Im \Gamma \simeq S^{p-1}$, and let $p: \Gamma \rightarrow PO(p, q+1)$ be a $H_{\Gamma}^{p, q}$ -convex-cocompart representation, Then there exists a unique p(T)-invariant sneath complete, spacelike, maximal submanifold $Z \subset HP^{iq}$. Moreover, p(r) cets properly discontinuously and cocompactly on Z.

I. Maximal enbinamifolds
let ZC [HPig (or MPig) a p-dimensional submanifold
· Z is spachke if I=L'GIMPIG is a Riemannuan metric.
· Z is complete if I is a complete Riemannan metric.
Recall the def of second fundamental form;
given X,7 vector fields in UCZ, PEU
$\nabla_{x} Y(p) = \nabla_{x}^{Z} Y(p) + \mathbb{I}(x(p), Y(p))$
$\epsilon T_{p} \Sigma = \epsilon N_{p} \Sigma$
$(\tau_{\tau} \tau)$

Z is totally geodesic if I = 0-The vector H= tr I is the mean curvature vector $\mathbb{I}_{p}: \mathcal{T}_{p}\mathbb{Z} \times \mathcal{T}_{p}\mathbb{Z} \to \mathcal{N}_{p}\mathbb{Z} \qquad \mathcal{N}_{p}\mathbb{Z} \simeq \mathbb{R}^{n}$ Take $2v_1, -, v_q 2$ or the normal basis for NpZ < Ip, V; > is a R-valued 2-form ~, trace using I (raise an index and trace) Concretely, $H(p) = \sum_{i=1}^{n} II(e_i, e_i)$ for $1e_i^3$ any orthonormal basis of $T_p \Sigma$ Finally, Σ is maximal if $H \equiv O$,

Fact Z is maximal
(=) for every smeeth variation $L_{\pm}: \mathbb{Z} \rightarrow H^{P_1 q}$, $L_0 = L_1$
such that $l_t = l$ outside a compart subset K,
$\frac{d}{dt} Vol(\Sigma_t \cap K) = 0$ $\frac{d}{t=0} Vol(\Sigma_t \cap K) = 0$
Indeed, setting $\overline{Z}(p)$; $= \frac{d}{dt} L_{t}(p)$
$\frac{d}{dt}\Big _{t=0} \text{Vol}\left(\mathbb{Z}_{t} \cap \mathbb{K}\right) = -2\int \langle H_{1}^{2} \rangle dMd_{2}$ $\sum_{n \in \mathbb{Z}_{n}} \mathcal{K}$
· · · · · · · · · · · · · · · · · · ·

Hence, if $H(p) \neq 0$, let $f: \mathbb{Z} \longrightarrow \mathbb{R}$ a supported function with $f(p) > 0$, $f \ge 0$	compactly
bet it be a variation such that	· · · · · · · · · · · · · · · · · · ·
$z = \frac{d}{dt} \bigg _{t=0}^{t+1} = fH$. .
$\frac{d}{dt}\Big _{t=0} Vol(Z_tnk) = -2\int f < H H>d$ $\sum_{z \in Z_t} Vol(Z_tnk) = -2\int f < H H>d$	$W1_z \neq 0$
	· · · · · · · · · · · · · · · · · · ·

	1						 	• • • • • • • • • • • • • •			2		t				1			Σ Σ	t		٢) 0 0		SU	R S		s	ίη Μ	м Л 1	×1	t a	~	و ا		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • •								
· · · ·		H	e	-U		•	~£	2	4	Š	re	Ŷ	•	8n	. b	Ň	~0	~	• • •	f•	l	0	۰ ۲	t		\ <u>a</u>		<mark>را</mark>	•	<mark>M</mark>	C	×	۰ د د	<u></u>	~		8-	n -		JQ	n	~	·	•	•	•	•	•	•
• • •			٠	•	•																								•																				
		• •																																															
• • •		• •																																													•		
• • •		• •		•	•																								•									•	•		•					•		•	•
• • •		• •																																											•		•		•
																																												•					

I. Asymptotic boundaries Recall that a subset Ac ? HB9 C RIPP+9 is
• positive if ∀×,y,ZEA, ×Oy@ZCR ^{R17+1} has dimension 3 and signathre (2,1)
• non-regative if ¥x, y, 7 ∈ Λ, × ⊕ y ⊕ 2 does not contain a negative definite 2-place
If Λ is homeomorphic to S^{P-1} and possiblive (non-negative), then it will be called a possitive (non-negative) (P-1)-sphere

Theorem (S Smith-Toulisse 123) Let $\Lambda < \partial_{\infty} H ^{p_1 q}$ be a non-vegative (p-1)-sphere.
Then there exists a unique complete montioned submomifold $\Sigma^{P} \subset H^{P_{1}P_{1}}$ and that $\mathcal{O}_{S} \Sigma = \Lambda$,
Moreover, Z is contained in the convex hull C(1).
Fact ACO_H ^{PiA} is a non-negative (p-1)-sphere =) JZP complete spacelike submanifold
such that $D_{p}Z = A$ ("complete" can be replaced by "properly unbedded")

Runk The theorem does not hold for ZK = 141Pi9, & 2P, P=3.
In fact, there exist Jordon curves $\Lambda \subset \partial_{\infty} H^3$ that admit several minumal discks $\Sigma_i \subset H^3$, $i \in I$, with $\partial_{\infty} \Sigma = \Lambda$
(Anderson '86, Huang-Wang '15, Lowe-Huang-5. 123)
Including H ³ - H ^{P19} as a totally geodesic subspaces 2(I;) are maximal 2-dimensional submanifolds with
$\mathcal{P}_{\infty} \iota(Z;) = \partial \iota(\Lambda),$

III. Invariant submanifolds
Corollary (S Smith - Toulisse '23)
Let Γ be a hyperbolic group with $D\Gamma \simeq S^{p-1}$, and let $p: \Gamma \rightarrow PO(p, q+1)$ be a $1Hf^{p, q}$ -convex-cocompart representation,
Then there exists a unique $p(T)$ -invariant smooth complete, spacelike, maximal submonifold $\Sigma \subset H_{1}^{Piq}$.
Moreover, $\rho(\Gamma)$ cets properly discontinuously and cocomparetly on Σ .

Proof of "The SST => Cor SST " non-negative
Let $\Lambda := \text{proximal limit set of } p = a \text{ positive } (p-1) - \text{sphere.}$ Let Σ be the complete measured submanifold with $\mathcal{Q}_{\infty}\Sigma : \Lambda$.
• Stree A is p(r)-invariant, by uniqueness, Z is p(r)-invariant.
• For uniqueness, by DGK, if Σ is a complete submanifold which is $e(\Gamma)$ -invariant, then $\mathcal{O}_{\infty}\Sigma = \Lambda$, so one can apply uniqueness in SST.
 Finelly, ZCC(A) and is a closed subset -> P(T) DZ is prop. disc. and cocompact.