REFEVENCE: J. Dana'ger, F. Guéritand, F. Kassel, Convex-cocompactness	in pseudo-Riemannian hyperbolic spaces Geom	. Dedicata 192, 87-126 2018
LECTURE 2	Reference : J. Danager, F. Guéritand, F. Kass	el Convex-cocompactness
LECTURE 2		
LECTURE 2	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
$\Gamma \Gamma / T \Gamma P \Gamma 2$		
	L (T P L	
· · · · · · · · · · · · · · · · · · ·		

I. Pseudo-hyperbolic space Given x, y e IR^{p+q+1}, let / idp | D $\langle x, y \rangle := \sum_{i=1}^{p} x_i y_i' - \sum_{j=p+1}^{p+q+1} x_j y_j'$ 0 -idg We define ; $A_{P_1}^{\gamma} = \frac{2}{3} \times e R^{P_1} | \langle \times, \times \rangle = -1 \frac{2}{3} = D^{P_1} \mathbb{S}^{9}$ The restriction of <., > endows Htp19 with a pseudo - Riemannian metuic of signature (p,q) and constant sectional curvature -1. $\text{Isom } |\widehat{H}^{P_1 q} = O(P_1 q + 1)$

Then define $H^{p_1 q} := H^{p_1 q} / \frac{1}{2 \pm i d^2} $ $\equiv D^{p_1} \times 5^{q_1} / (-id, -id) > RP^{p_1 q}$	
endoured with the metric induced from 1419,9	
Isom $HP^{19} = PO(P_19+1)$	
We have moreover $\mathcal{D}_{\infty}\hat{H}^{P,q} := \frac{3}{2} \times \varepsilon \left[R^{P+q+1} \right] < \times, \times > = 0 \frac{3}{R_{>0}} = \frac{1}{2}$	≤ \$ ^p × \$ ⁹
$ \mathcal{O}_{\infty} H^{P, 9} := \frac{1}{2} \times e R^{P+9+1} < \times, \times > = 0^{\frac{3}{2}} / R^{\ast} \leq \leq \$^{P} \\ \tilde{O}(H^{P, 9}) = R^{P+9} $	× \$ 9 (-id,-id)>

Examples
• $H^{P,o} = \frac{1}{m_{prrbolorid}} \sum_{i=1}^{p} x_i^2 - x_{p-r}^2 = -1$
$\mathbb{H}^{P^{\prime o}} \cong \mathbb{H}^{P}$
• $ H^{0,9} = \begin{cases} \frac{q+1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{cases} = 1 \\ \begin{cases} \frac{q}{2} \\ \frac{1}{2} \end{cases} = (5^{q} - (sphenical metwor))$
14°19 = (IRIP9, - (spherical metric))
Ruck Both $ H^{p} \text{ and } - R P^{q} \text{ embed in } H ^{p_{1}q} \text{ os totally}$ geodessic submanifolds $\begin{pmatrix} x_{p+2} = \dots = x_{p+q+1} = 0 \\ x_{n} = \dots = x_{p} = 0 \end{pmatrix}$

Affine charts In the affine chart $A = \frac{3}{p+q+1} \neq 0^{2}$ we have $\|H^{p,q} \cap A_{p+q+1} = P\{\frac{p}{2} \times \frac{p}{2} - \frac{p}{2} \times \frac{p}{2} + \frac{p}{2} \times \frac{p}{2} \times \frac{p}{2} \times \frac{p}{2} + \frac{p}{2} \times \frac{p}{2} \times$ $= P_{\frac{3}{2}} \times_{p+q+1} = 1 \sum_{\substack{j=1 \\ i=1}}^{p} \frac{t_{j}^{2}}{t_{j}^{2}} - \frac{t_{j}^{2}}{t_{j}^{2}} < 1_{\frac{3}{2}}$ $t_{i} = \frac{x_i}{2}$ ×p+q+1

Some pictures in A4 (p+q=3) C D H klerin model of H³ • $H^{3,0} \cap A_{4} = \begin{cases} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{cases} = 1 \end{cases} < 1 \end{cases}$ • $H^{2_{11}} \cap A_{4} = \frac{3}{5} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} - \frac{1}{3} < \frac{1}{5}$ (IH^{P,1} is also called Anti-de Sitter) spece of dimension p+1 DalH21 A4

2 HH 1,2 • $|H_{0}^{1/2} \cap A_{4} = \frac{3}{2} t_{1}^{2} - t_{2}^{2} - t_{3}^{2} < 1$ / 14 1, P is also called (minns) de Sitter space of dim p+1 • $H^{0,3} \cap A_4 = IR^3$ = affine chart for IRP^3

I. Convex cocompactuess	•
Definition (Danciger-Guévitand-Kassel (18)	•
A discrete subgroup TZPO(P,9+1) is HP19_convex-cocompact	•
if JCC 141 ^{P19} such that:	•
1) C is closed and properly convex bounded in an affin chart	-
2) (has non-empty interior - Automatic if I irreducible	
projective enbapage of IR)	•
3) Po C = C \ C does not contain any projective line segnent of	•
4) [preserves C and [Ar C Antoniatic)	•
is properly discontinuous and cocompact, if q=0 ()	

Runk We will work with representations $p:\Gamma \rightarrow PO(p,q+1)$ with $p(\Gamma) H1^{p_1}$ -convex-cocompact. We will assume: p has always finite kernel, $2 \Rightarrow p$ injective
e is sometimes also terrator-free [(*++)] Example of T.M. hal $O(o_1) [(*++)] PO(B9+1)) ($
is 1H1 ¹⁹ . convex - cocompart (take C = thickending of 1H ^P c Ht ^P (1))
Examples come from AdS geometry too.

Theo The }	vem (space	Dana'ger $p: \Gamma \rightarrow F$ of finite	- Guév 20 (p, 9+1 . kurnel	itand-Kasse	4 '18) m (T	1. PO(p19-6	· · · · · · · · · · · · · · · · · · ·
	e(r) open	H ^{1,9} come	x cocor	mpart }			Andor	porenty
								1

P1= Stab (Isotropic line in RP19+1) III. Anosov representations Let T be a word hyperbolic group. A representation p: [-> PO(p, q-1) is P1- Anosa if there exists a continuous, p-equivariant map $\frac{3:2\Gamma \longrightarrow 2_{\infty} H^{P_1 q}}{2} \left(= \frac{PO(P_1 q^{+1})}{P_1} \right)$ such that: i) Z is transverse ; $\forall m_1, m_2 \in \partial \Gamma$, $m_1 \neq m_2 \Rightarrow Z(m_1) \notin Z(m_2)^{\dagger}$ () z injective) Automatic in) 3 has an associated flow with a uniform contraction property Antomatic if e irreducible

Rink The most important consequence of in) is: 3 is dynamics - preserving i.e. if y has infinite order, 3 (attracting fixed point) = attracting fixed point 3 (of 8 in 21 P els) is proximal i.e. has a unique attracting fixed point Moreover, 3(27) = proximal limit set of e(r) = 3 attracting fixed points of proximed p(x)'s }

Fact If $q=0$, $p: \Gamma \rightarrow PO(P, 1)$ is P_1 -Anos $\Leftrightarrow p$ is H^{P_1} -convex-cocompact in T	for classical sense.
Definition A subset $\Lambda_c \partial_a H^{R,9} \subset \mathbb{R}^{PP+9}$ · positive if $\forall \times_1 y, z \in \Lambda$, $\times \oplus y \oplus z \subset \mathbb{R}^{P_1 7+1}$	is has dimension 3 and signathre (2,1)
· regative if ∀×19,2EA, ×@y@ZCR ^{B17+1}	is a copy of 1H ²) has dimension 3
$\left(\iff (\times \mathscr{P}_{\mathcal{Y}} \oplus \mathcal{F}) \cap \mathbb{H}^{P^{-3}, \mathfrak{P}^{+1}}\right)$	and signature $(1,2)$ is a copy of H^2)

Geometrically × 5 H Ч đ Y positive not positive

Fact If $\Lambda c \partial_{\infty} H P^{19}$ is closed, convected and transverse, then Λ is either positive or regative.
Theorem (Donciger-Guéritand-Rassel '18) Let p ; $\Gamma \rightarrow PO(p, q+1)$ a discrete representation. Then
ρ has finite kernel $(=)$ Γ is word hyperbolic & $(=)$ $&$ $&\rho(\Gamma) is H^{Pi^{9}}-convex-cocompact \rho is positive P_{1}-Anoson$
the proximal limit set is positive Similarly,
e(T) is HP-1,9-17 - conver - cocompact (=) p is negative P1- Anosov

Corollary $\begin{cases} p: \Gamma \longrightarrow PO(P_1 q + 1) \\ of finite kernel \\ e(\Gamma) HP19 - convex - cocompact \end{cases}$ $\begin{cases} is open in How (\Gamma, PO(P, 9-1)) \end{cases}$ (P1-Anocov property is open) Proof Idea; = "e(Γ) Ω $\mathcal{C}(\Lambda) = convex hull of the$ $provined limit set of <math>\mathcal{C}(\Gamma)$ is properly discontinuous and cocompact.

"=>" Use the Hilbert metric I on	· ·
Ω = maximal invariant proper convex domain (= dual of the convex hull of Λ)	· · · · · · · · · · · · · · · · · · ·
~ (C,d) is Gronov hyperbolic ~ T is hyperbolic (Million - Švourc)	· · · · · · · · · · · · · · · · · · ·
Moreover, the arbit map $\Gamma \longrightarrow (C,d)$ extends to a transverse continuous map $\overline{3}: \partial \Gamma \longrightarrow \partial C \cong 2_{\infty} C = \Lambda c \partial_{\infty} H^{P,q}$	· · · · · · · · · · · · · · · · · · ·