ICM 2018	invited lecture.
. A. Winhard	An invitation to hugher Teichmüller theory
Refevence;	
· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·

Motivation
For S a dosed oriented surface, the Telchumiller space
16(S) = { hyperbolic métrics } on S Diff. (S) / p.h:= p*h
is identified to a connected component of
$\mathcal{X}(\pi_1 S, PSL(2 \mathbb{R})) = How(\pi_1 S, PSL(2 \mathbb{R}))$
wa the helonomy map
hol: 7 (5) x (This, PSL (2, R))

The construction of hol is as follows:
grun he hyperbolic metors on S, bet h:= II h on S
(S, h) is a complete simply connected hyperbolic surface
⇒ 7 dur; (s, h) -, 1H ² orientation - preserving isometry
Then Je: The Ison Ht ² "holonony representation"
such that $\forall y \in \pi_1 S$ der. $S = \rho(y) \cdot der$
=> P(T,S) OHZ is free, properly discontinuous, H2 ~S.
Goldman hol (B(S)) is a convected component (maximal Euler number)

So, 3 holonomies of hyperbolic 3 C Hom (TaS, PS2 (2, IR)) 3 metrics on S 3 C Hom (TaS, PS2 (2, IR)) has 2 convected components	 i i<
consists entirely of discrete and fonthful representations.	· · · ·
Now, let G a real cun'-simple lie group of rank 32. Def (Winnhard)	 . .<
A higher Teichmübber space is a connected component of	· · ·
How (M,S,G) that consists articly of discrete and	· · ·
faithful representations.	· · · ·

Examples
· Hitchin components for G real split simple lie group
[e.g. G=SL(n, IR), Sp(2n, IR), SO(n, n+1)]
namely the convected components containing the representations
i.e. for p: T1S -> SL (2, R) in the Teichmüller component
and i; SL (2, IR) ~ G irreducible embedding.
(Chri-Goldman for SL (3, 1R), Fock. Gencharov, Labourie)
· Maximed representations for G real simple of Hermitian type
[e.g. G=O(2,9)] (Bradlow-Garcia Prade-Gothen, Burger-Jozzi-Wienhard)
• θ-positive representations for in addition, G=SO(piq) p≠q,
and an exceptional family of rank 4 conjecturally there
(Guichard - Whenhard, Guichard - Labourie - Whenhard) are all higher Teich

let now M be a closed (topological) manufold of dimension 4>2
Goal: look for connected components of Hom(T,M,G) consisting entirely of discrete and faithful representations
"higher higher Tetchmüller spaces"
higher høgher dømendored vank
Ruck By Mostow rigidity, If M is hyperbolic the holonomies $\pi_{n} M \rightarrow SO(n,1)$ of hyperbolic structures on M form a SO(n,1) - conjugacy orbit of a point.

Rmk	Moreover, we	would like	to have	a re	mth	
· · · · · · ·	Zanski denn	image in	a higher	higher	Teschmi Ner	space.
· · · · · · ·	There are exc	mples when	e	· · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · ·
· · · · · · ·	P; 11, M	—, H	G		rigid	· · · · · · · · · · ·
		J.	· · · · · · · · ·		· · · · · · · · · ·	· · · · · · · · · ·
· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	vonk one	· · · · · · · · ·		· · · · · · · · · · ·	· · · · · · · · · · ·
· · · · · · ·	· · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·	· · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · ·
· · · · · · ·	· · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·	· · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · ·
	· · · · · · · · · · · · ·					

"Old" examples ; Convex projective structures = [= [= [=]]
Theoren (Benoist 105) dim Man If The does not contain an infinite nilpotent normal subgroup, then
3 holonomies of convex projective 3 < Hom (TT_M, PGL (1+1, 12)) structures on M
is a union of convected components. (i.e. $p(\pi,M) \cap \Omega$ properly discontinuously. freely and cocompactly.
· openvess: Koszul '68
 dosedness; Choi-Goldman for n=2 2 2000s kin for n=3 J

"New" examples : HP19_ convex-cocompactness
Theorem (Beyrer - Kassel 123)
let P, q E IN, P ≥ 2, 9 ≥ 1. If M is a cloced regatively curved monifold, dim M=p, then
$\begin{cases} H^{1/9} - convex cocompact representations \\ P: T_1 M \rightarrow PO(P, 9+1) \end{cases} \qquad $
is a union of connected components.
· openness: Dangiger - Guéritand - Kassel '18 by the Py-Anosa condition
· dosedness: Barbot '15 for M hyperbolic and q=1
(masimal globally hyperbolic Anti-de Sitter) structures on M×IR
. for p=2, these are maximal components in PO(2,9)

Ruck For q=0, HP12- convex-cocompact (=) cocompact · p=2 ~ true because of Teichmübler spaces · p>2 ~ true by Mostow rigidity Ruck By the following theorem of Kleiner-Leeb and Quint, convex-cocompactness in the Riemannian symmetric space is not more interesting than cocompactness, for rank G ≥ 2. Theorem Let G be a real semi-simple lie group, rank 6 ? 2. If TLG disvete and Zawiski dunse acts cocompactly on C C G/k non-empty closed, convex ther I is a uniform E Riemandon symmetric space lattice. latt ce. - Look for convex-cocompactness in a non-Riemannian symmetrie