$\begin{array}{l} \textbf{Problem sheet 2} \\ \textbf{Thursday 16th May 2024} \\ \textbf{Submanifolds of } \mathbb{H}^{p,q} \end{array}$

Exercise 1: Examples of minimal and maximal surfaces

The goal of this exercise is to study examples of minimal and maximal surfaces : the Clifford torus in \mathbb{S}^3 and its analogue in $\mathbb{H}^{2,1}$, called the Barbot surface.

- 1. Let P a 2-dimensional subspace of \mathbb{R}^4 , let $\gamma = P \cap \mathbb{S}^3$, and let $\gamma^* = P^{\perp} \cap \mathbb{S}^3$. Show that the set of midpoints of geodesic segments in \mathbb{S}^3 connecting points of γ and γ^* is a minimal surface (called Clifford torus).
- 2. Do the same for P a plane of signature (1,1) in $\mathbb{H}^{2,1}$, finding a maximal surface (sometimes called Barbot surface).
- 3. Find the subgroup of isometries of \mathbb{S}^3 and $\mathbb{H}^{2,1}$ preserving the Clifford torus and the Barbot surface.
- 4. Show that the Clifford torus is a torus, the Barbot surface is a plane, and both are intrinsically flat.
- 5. Compute the second fundamental forms in coordinates that make the first fundamental form the standard Euclidean metric.
- 6. Compute the mean curvature of the surface at distance d from γ , for $d \in (0, \pi/2)$.

Exercise 2: Anti-de Sitter geometry and $PSL(2, \mathbb{R})$ — continued

Recall from Sheet 1 that there is an isometry $\mathbb{H}^{2,1} \cong \mathrm{PSL}(2,\mathbb{R})$, that induces a natural identification $\partial_{\infty}\mathbb{H}^{2,1}\cong \mathrm{P}\{\mathrm{rank} \text{ one matrices}\}\cong \mathbb{R}\mathrm{P}^1 \times \mathbb{R}\mathrm{P}^1$.

- 1. Show that, under the above identification, a triple $((x_1, x_2), (y_1, y_2), (z_1, z_2)) \in (\mathbb{RP}^1 \times \mathbb{RP}^1)^3$ is positive (resp. negative) if and only if both triples (x_1, y_1, z_1) and (x_2, y_2, z_2) consist of pairwise distinct elements and they have the same cyclic order (resp. the opposite cyclic order) in \mathbb{RP}^1 . (Hint : to simplify computations, use the transitivity of the action of $PSL(2, \mathbb{R})$ on ordered triples in \mathbb{RP}^1 .)
- 2. Prove that a subset $\Lambda \subset \mathbb{R}P^1 \times \mathbb{R}P^1$ homeomorphic to S^1 is positive (resp. negative) if and only if it is the graph of an orientation-preserving (resp. orientation-reversing) self-homeomorphism of $\mathbb{R}P^1$.
- In the second part, we wish to show that if $\rho = (\rho_1, \rho_2) : \pi_1(S) \to \text{PSL}(2, \mathbb{R}) \times \text{PSL}(2, \mathbb{R})$ acts freely, properly discontinuously and cocompactly on a spacelike surface $\Sigma \subset \mathbb{H}^{2,1} \cong \text{PSL}(2, \mathbb{R})$, then both ρ_1 and ρ_2 are Fuchsian representations.
 - 3. Given Σ as above, show that the map $\Phi : T^1\Sigma \to \mathbb{R}P^1 \times \mathbb{R}P^1$ sending (x, v) to $\lim_{t\to+\infty} \exp_x(tv)$ is well-defined and ρ -equivariant.
 - 4. Letting π_i be the projections on each factor, show that the maps $(x, v) \to (x, \pi_i \circ \Phi)$ induces bundle isomorphisms between T^1S and $S \times_{\rho_i} \mathbb{R}P^1$.
 - 5. Conclude that ρ_1 and ρ_2 have maximal Euler class and are thus Fuchsian representations.
 - 6. Finally, explain that $\partial_{\infty}\Sigma$ is the graph of the unique $\rho_1 \rho_2$ -equivariant homeomorphism of $\mathbb{R}P^1$.

Exercise 3 : The Poincaré model of $\mathbb{H}^{p,q}$

The goal is to compute the pseudo-hyperbolic metric as the following metric on $\mathbb{D}^p \times \mathbb{S}^q$:

$$f^2\left(g_{\mathbb{S}^p_+} - g_{\mathbb{S}^q}\right)$$

where \mathbb{S}^p_+ is the hemisphere in \mathbb{S}^p and f is a function of the distance from the center of \mathbb{S}^p_+ .

1. Check that the stereographic projection $\varphi : \mathbb{R}^n \to \mathbb{S}^n \subset \mathbb{R}^n \times \mathbb{R}$ can be expressed as :

$$\varphi(u) = \frac{\|u\|^2 - 1}{\|u\|^2 + 1} \left(\frac{2u}{\|u\|^2 - 1}, 1\right)$$

- 2. Show that the pull-back of the spherical metric via φ is $4du^2/(1+||u||^2)^2$.
- 3. Do the analogue of items 1 and 2 for the stereographic projection $\varphi : \mathbb{D}^n \to \mathbb{H}^n \subset \mathbb{R}^{n,1}$. 4. Now consider the map $\varphi : \mathbb{D}^p \times \mathbb{S}^q \to \widehat{\mathbb{H}}^{p,q}$ defined by

$$\varphi(u,w) = \frac{1 + \|u\|^2}{1 - \|u\|^2} \left(\frac{2u}{1 + \|u\|^2}, w\right)$$

Check that, if q = 0, this coincides with the stereographic projection as in item 3.

- 5. Show that φ is a diffeomorphism.
- 6. Show that

$$\varphi^* g_{\widehat{\mathbb{H}}^{p,q}} = \left(\frac{1+\|u\|^2}{1-\|u\|^2}\right)^2 \left(\frac{4\|du\|^2}{(1+\|u\|^2)^2} - g_{\mathbb{S}^q}\right)$$

and thus conclude the claim.

7. What is the analogue of the above construction for \mathbb{S}^n , i.e. a map $\varphi : \mathbb{R}^p \times \mathbb{S}^{n-p} \to \mathbb{S}^n$?

Exercise 4 : Differential geometry of submanifolds

Let Σ be a *p*-dimensional spacelike submanifold of $\mathbb{H}^{p,q}$. Recall that the second fundamental form $\Pi \in \Gamma^{\infty}(\operatorname{Sym}^{2}(T^{*}\Sigma, N\Sigma))$ is defined by :

$$\nabla_X Y = \nabla_X^{\Sigma} Y + \mathrm{II}(X, Y)$$

and its norm $\|II\| \in C^{\infty}(\Sigma)$ is defined by

$$\|\mathrm{II}\|^2 = -\sum_{i,j=1}^p \langle \mathrm{II}(e_i, e_j), \mathrm{II}(e_i, e_j) \rangle$$

where $\{e_1, \ldots, e_p\}$ is an orthonormal basis for Σ .

- 1. Show that the definition of ||II|| does not depend on the choice of the orthonormal frame.
- 2. Prove the following identity between the Riemann tensors of $\mathbb{H}^{p,q}$ and Σ :

$$R^{\Sigma}(X,Y)Z,W\rangle = \langle R(X,Y)Z,W\rangle + \langle \mathrm{II}(X,W),\mathrm{II}(Y,Z)\rangle - \langle \mathrm{II}(X,Z),\mathrm{II}(Y,W)\rangle$$

3. Deduce the Gauss' equation in $\mathbb{H}^{p,q}$:

$$K(e_i, e_j) = -1 + \langle \mathrm{II}(e_i, e_i), \mathrm{II}(e_j, e_j) \rangle - \langle \mathrm{II}(e_i, e_j), \mathrm{II}(e_i, e_j) \rangle$$

Deduce that, if p = 2, then a maximal surface has curvature ≥ -1 .

4. Using the previous item, show that, if Σ is a maximal submanifold of dimension p, then

$$\operatorname{Ric}_{\Sigma}(e_i, e_i) = -(p-1) - \sum_{j=1}^{p} \langle \operatorname{II}(e_i, e_j), \operatorname{II}(e_i, e_j) \rangle$$

and

$$\operatorname{Scal}_{\Sigma} = -p(p-1) + \|\operatorname{II}\|^2$$

Conclude that $\operatorname{Scal}_{\Sigma} \geq -p(p-1)$, and explain how this inequality generalises the conclusion of the previous item.