

Exercise 1 : Differential geometry in the hyperboloid model

Consider the "hyperboloid model" of the pseudo-hyperbolic space, namely

$$\widehat{\mathbb{H}}^{p,q} = \{ x \in \mathbb{R}^{p,q+1} \, | \, \langle x, x \rangle = -1 \}$$

1. Show that, if D is the flat connection of \mathbb{R}^{p+q+1} and ∇ is the Levi-Civita connection of $\widehat{\mathbb{H}}^{p,q}$, then

$$(\nabla_X Y)(p) = (D_X Y)(p) - \langle X, Y \rangle p$$

for any point p and any vector fields X, Y defined in a neighbourhood of p.

2. Show the following identify for the Riemann tensor R of $\mathbb{H}^{p,q}$:

$$R(X,Y)Z = \langle X,Z\rangle Y - \langle Y,Z\rangle X$$

- 3. Conclude that $\widehat{\mathbb{H}}^{p,q}$ has constant sectional curvature -1.
- 4. Show that the intersection of $\widehat{\mathbb{H}}^{p,q}$ with any linear subspace of \mathbb{R}^{p+q+1} is totally geodesic.
- 5. Show that the isometry group of $\widehat{\mathbb{H}}^{p,q}$ is O(p,q), and that every linear isometry $T_x \widehat{\mathbb{H}}^{p,q} \to T_y \widehat{\mathbb{H}}^{p,q}$ is realised as the differential $d\varphi$ of a global isometry $\varphi : \widehat{\mathbb{H}}^{p,q} \to \widehat{\mathbb{H}}^{p,q}$.
- 6. Deduce that $\widehat{\mathbb{H}}^{p,q}$ is geodesically complete.
- 7. Find the geodesics $t \mapsto \exp_p(tX)$, for given $p \in \widehat{\mathbb{H}}^{p,q}$ and $X \in T_p\widehat{\mathbb{H}}^{p,q}$. (Hint : distinguish the cases $\langle X, X \rangle = 1, 0$ and -1.) Use the result to deduce again that $\widehat{\mathbb{H}}^{p,q}$ is geodesically complete.

Exercise 2 : Anti-de Sitter geometry and $PSL(2, \mathbb{R})$

Let $\widehat{G} = \mathrm{SL}(2,\mathbb{R})$ and $G = \mathrm{PSL}(2,\mathbb{R})$. Throughout the exercise, do not forget that $G \cong \mathrm{Isom}(\mathbb{H}^2)$ via the upper half-plane model of \mathbb{H}^2 .

- 1. Show that $\mathbb{R}^{2,2}$ is isomorphic to the vector space of 2-by-2 real matrices endowed with the quadratic form q = det. Deduce that $\widehat{\mathbb{H}}^{2,1}$ is isometric to \widehat{G} , and $\mathbb{H}^{2,1}$ is isometric to G, when the latter are endowed with the Lorentzian metric induced by q.
- 2. Show that the identity component of the group of isometries of G equals $G \times G$ acting by left and right multiplication. What is the identity component of the group of isometries of \widehat{G} ?
- 3. Use the previous exercise to compute the geodesics of G. Try to use your knowledge of Lie groups, and in particular the exponential map, to find the same result.
- 4. Show that the subset of elements of G of order two is a totally geodesic copy of \mathbb{H}^2 , and find an explicit isometry.
- 5. Check that, in the matrix model above, $\partial_{\infty} \mathbb{H}^{2,1}$ is identified with the projectivisation of the space of rank one 2-by-2 real matrices.
- 6. Now show that the map $[M] \mapsto (\operatorname{Im}(M), \operatorname{Ker}(M))$ identifies $\partial_{\infty} \mathbb{H}^{2,1}$ with $\mathbb{R}P^1 \times \mathbb{R}P^1$. How does the isometry group $G \times G$ act on $\mathbb{R}P^1 \times \mathbb{R}P^1$ under this identification? Can you find a criterion for the convergence of a sequence $\{\gamma_n\}$ in G to an element $(x, y) \in \mathbb{R}P^1 \times \mathbb{R}P^1$?
- Further reading : Bonsante-Seppi, "Anti-de Sitter geometry and Teichmüller theory", section 3, In the tradition of Thurston : Geometry and Topology 2020, https ://arxiv.org/abs/2004.14414.

Exercise 3 : An upper half-space model

Consider the following "upper half-space model" of $\mathbb{H}^{p,q}$:

$$\mathcal{H}^{p,q} := \left(\{ (x_1, \dots, x_{p+q}), x_0 > 0 \}, \frac{dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2}{x_1^2} \right)$$

- 1. Can you find some geodesics and some totally geodesic subspaces of $\mathcal{H}^{p,q}$?
- 2. We now want to find all lightlike geodesics (i.e. such that $\langle \gamma', \gamma' \rangle = 0$). As a first step, show the following formula relating the Levi-Civita connections $\widehat{\nabla}$ and ∇ of two pseudo-Riemannian metrics \widehat{g} and g with $\widehat{g} = e^{2u}g$:

$$\widehat{\nabla}_X Y = \nabla_X Y + du(X)Y + du(Y)X - g(X,Y)$$
gradu

- 3. Deduce that unparameterised lightlike geodesics are invariant under a conformal change of the metric.
- 4. Using the above point, find all lightlike geodesics as unparameterised curves,
- 5. Now find all lightlike geodesics as parameterised curved, and deduce that $\mathcal{H}^{p,q}$ is not geodesically complete.
- 6. If you are motivated in computations, compute the Christoffel symbols, write down the geodesic equation and try to find solutions explicitly.
- 7. If you are *particularly* motivated in computations, show directly that the Riemann tensor of $\mathcal{H}^{p,q}$ can be expressed as R(X,Y)Z = g(X,Z)Y g(Y,Z)X, and thus $\mathcal{H}^{p,q}$ has constant sectional curvature -1.
- 8. If you are *extremely* motivated in computations, show that the map

$$(x_0, \dots, x_{p+q}) \mapsto \left(\frac{1-h(x)-x_1^2}{2x_1}, \frac{x_2}{x_1}, \dots, \frac{x_{p+q}}{x_1}, \frac{1+h(x)-x_1^2}{2x_1}\right)$$

where $h(x) = x_2^2 + \ldots + x_p^2 - x_{p+1}^2 - \ldots - x_{p+q+1}^2$, defines an isometric embedding of $\mathcal{H}^{p,q}$ into $\widehat{\mathbb{H}}^{p,q} \subset \mathbb{R}^{p,q+1}$.

Further reading : Seppi-Trebeschi, The half-space model of pseudo-hyperbolic space, Developments in Lorentzian Geometry 2022, https://arxiv.org/abs/2106.11122

Exercise 4 : Proximal elements and limit sets

Recall that a proximal element of PO(p, q + 1) is an isometry of $\mathbb{H}^{p,q}$ with a unique attracting fixed point in $\mathbb{R}P^{p+q}$, and that the proximal limit set of a discrete subgroup $\Gamma < PO(p, q + 1)$ is the closure of the set of attracting fixed point of its proximal elements.

- 1. Show that, if $\gamma \in \text{PO}(p, q+1)$ is a proximal element, then its attracting fixed point is in $\partial_{\infty} \mathbb{H}^{p,q}$.
- 2. Show that, if Γ acts properly discontinuously on an open convex subset Ω , then its proximal limit set is contained in $\partial_{\infty}\Omega = \overline{\Omega} \cap \partial_{\infty}\mathbb{H}^{p,q}$.
- 3. Show that, if Γ acts properly discontinuously on an open convex subset Ω , then the set of accumulation points of any orbit is contained in $\partial_{\infty}\Omega$ and does not depend on the orbit. (Hint : use the Hilbert distance on Ω .)

Further reading : Danciger-Guéritaud-Kassel, Convex cocompactness in pseudo-Riemannian hyperbolic spaces, section 2, Geom. Dedicata 192, 87-126, 2018.