
EXERCISES IN TENSOR ALGEBRA:

GEOMETRIC INTERPRETATIONS

ANDREA PEDRINI

Notations

In the following notes:

• R3 is the three-dimensional Euclidean space;
• V is the inner-product linear space of translations of R3;
• B = (e1, e2, e3) denotes a (positively oriented) basis of V, hence e1, e2, e3

are linearly independent unit vectors, pairwise orthogonal;
• “i.e.” is the abbreviation for the Latin “id est”, which means “that is”;
• “e.g.” is the abbreviation for the Latin “exempli gratia”, which means “for

example”;
• “w.r.t.” is the abbreviation for the English “with respect to”.

The “Why?” sections contain some detailed proof of what is said in the other
parts of these notes. In some cases, the “Why?” sections are long and boring.
Don’t be afraid: you don’t have to study and recall them, but you can read them
if you are interested in some deeper explanation of the results presented here.

1. Inner product

Let u and v be two translations in V. By using the basis B, we write both u
and v in Cartesian components:

u = u1e1 + u2e2 + u3e3,

v = v1e1 + v2e2 + v3e3,

where ui, vi ∈ R for i = 1, 2, 3.

Definition 1. The inner product (or dot product) between u and v is the real
number

u · v := u1v1 + u2v2 + u3v3.

The inner product between the elements of the basis B is given by the Kronecker
Delta:

ei · ej = δij :=

{
1 if i = j

0 if i 6= j

whence the Cartesian components of u and v are

ui = u · ei and vi = v · ei, for i = 1, 2, 3.
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Definition 2. The length of a vector u = u1v1 + u2v2 + u3v3 is

|u| :=
√
u · u =

√
u21 + u22 + u23.

Let ϑu,v be the (planar) angle between u and v. Then

u · v = |u||v| cosϑu,v.

Why? We can convince ourselves by considering first the dwo-dimensional Eu-
clidean space R2. In this case, u = u1e1 + u2e2 and v = v1e1 + v2e2. Let α and β
be the planar angles as in the following picture, and note that ϑu,v = β − α.

Then
u1 = |u| cosα,
u2 = |u| sinα,
v1 = |v| cosβ,
v2 = |v| sinβ.

Whence
u · v = u1v1 + u2v2 =

= |u||v|(cosα cosβ + sinα sinβ) =
= |u||v| cos(β − α) =
= |u||v| cosϑu,v.

In R3 (and, in general, in any Rn), we can consider the vector v − u. By the law
of cosines,

|v − u|2 = |u|2 + |v|2 − 2|u||v| cosϑu,v.

On the other hand, by definition of length and by linearity of the inner product,

|v − u|2 = (v − u) · (v − u) = v · v − 2v · u + u · u = |u|2 + |v|2 − 2v · u,

and hence u · v = |u||v| cosϑu,v.

2. Representation of a tensor with a matrix (in a fixed basis)

Whenever we fix a basis for the space V (e.g. the basis B = (e1, e2, e3)) we
immediately have that the diads ei ⊗ ej form a basis for the space L(V) of all the
(second-order) tensor L : V → R, and each tensor L in L(V) can be written as

L =

3∑
i,j=1

Lijei ⊗ ej ,

where Lij := ei · Lej are the Cartesian components of L.
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For this reason we can always represent the tensor L with respect to the basis B
by using the matrix

[L] := (Lij)i,j=1,2,3 =

L11 L12 L13

L21 L22 L23

L31 L32 L33

 =

e1 · Le1 e1 · Le2 e1 · Le3
e2 · Le1 e2 · Le2 e2 · Le3
e3 · Le1 e3 · Le2 e3 · Le3


↑ ↑ ↑
Le1 Le2 Le3

whose columns are the vectors obtained by applying L to the elements e1, e2, e3 of
the basis B.

The matrices that represent L> and L−1 w.r.t. the basis B are, respectively, [L]>

and [L]−1.

Why? If we apply the tensor L to a generic vector u = u1e1 + u2e2 + u3e3 in V
we obtain

Lu = L

 3∑
j=1

ujej

 =

3∑
j=1

ujLej =

3∑
j=1

(u · ej)Lej =

=

3∑
j=1

(u · ej)

(
3∑

i=1

(Lej · ei)ei

)
=

3∑
i,j=1

(u · ej)(ei · Lej)ei =

=

3∑
i,j=1

(ei · Lej)(ei ⊗ ej)u =

 3∑
i,j=1

Li,jei ⊗ ej

u.

Example 1. The matrices that represent the identity tensor I and the null tensor
0 w.r.t any basis B are

[I] =

1 0 0
0 1 0
0 0 1

 and [0] =

0 0 0
0 0 0
0 0 0

 .

Example 2. W.r.t. B, the projections P||(e1) := e1⊗e1 and P(e1) := I−e1⊗e1 =
e2 ⊗ e2 + e3 ⊗ e3 are respectively represented by the matrices1 0 0

0 0 0
0 0 0

 and

0 0 0
0 1 0
0 0 1

 .

Example 3. Let L be the tensor that maps

e1 7→ 2e1 + 2e2, e2 7→ −
1

2
e1 + e2 and e3 7→ e3.

Then, w.r.t. the basis B = {e1, e2, e3}, the matrices that represent L and L> are,
respectively,

[L] =

2 − 1
2 0

2 1 0
0 0 1

 and [L]> =

 2 2 0
− 1

2 1 0
0 0 1

 .

In order to find the matrix that represents the inverse L−1, we can proceed by
computing directly [L]−1. We consider a generic matrix
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[L]−1 =

a b c
d e f
g h i


and we impose the condition [L]−1[L] = [I]:a b c

d e f
g h i

2 − 1
2 0

2 1 0
0 0 1

 =

1 0 0
0 1 0
0 0 1


We obtain the systems

2a+ 2b = 1

− 1

2
a+ b = 0

c = 0


2d+ 2e = 0

− 1

2
d+ e = 1

f = 0


2g + 2h = 0

− 1

2
g + h = 0

i = 1

with solutions 
a =

1

3

b =
1

6
c = 0


d = −2

3

e =
2

3
f = 0


g = 0

h = 0

i = 1

Then

[L]−1 =


1
3

1
6 0

− 2
3

2
3 0

0 0 1

 .

3. Exterior product

A tensor W is skew if W> = −W. When W is a skew tensor, we can always
associate with W a vector w(W), called the axial vector of W, such that

(1) Ww(W) = 0 (w(W) is in the axis A(W) := {u ∈ V : Wu = 0} of W),

(2) |w(W)|2 =
|W|2

2
=

tr(WW>)

2
.

Conversely, the skew tensor associated with the vector w is the skew tensor W(w)
such that w is its axial vector.
Actually, when we consider the skew tensor W we can always find two different
vectors that satisfy the two conditions above (if we call one of them w, then the
other is −w). However, if we choose one of them to be the axial vector of W
and impose the linearity condition w(W1 + W2) = w(W1) + w(W2), then the
axial vectors of all the skew tensors of V are automatically determined. This choice
is strictly related to the orientation of the space V. In these notes (and in the
homework) we fix the positive orientation, which is the choice of the axial vectors
such that

W(e1)e2 = e3.
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Definition 3. The exterior product (or cross product) between the two vectors u
and v is the vector

u× v := W(u)v.

By choosing the positive orientation, we immediately obtain

e1 × e2 = e3.

We also have
e2 × e3 = e1 and e3 × e1 = e2.

Moreover, the exterior product is linear in both the arguments, and v×u = −u×v.
In Cartesian components we have

u× v =

3∑
i,j,k=1

εijkujvkei,

where εijk are the component of Ricci alternator (or also the 3-dimensional Levi-
Civita symbol)

εijk :=


1 if ijk is an even permutation of 123

− 1 if ijk is an odd permutation of 123

0 if ijk is not a permutation of 123

Note. An even permutation of 123 is a permutation that can be obtained from
123 by an even number of two-element exchanges. An odd permutation of 123
is a permutation that can be obtained from 123 by an odd number of two-element
exchanges. Hence, the permutations of 123 are

even: 123 231 312, odd: 132 213 321.

The exterior product can also be computed by using the formal determinant

u× v =

∣∣∣∣∣∣
e1 e2 e3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ = (u2v3 − u3v2)e1 + (u3v1 − u1v3)e2 + (u1v2 − u2v1)e3.

The vector u× v enjoys the following two interesting properties:

(1) it is orthogonal to both u and v,
(2) its length is the area of the parallelogram“described by” u and v, whose

vertices are the points O, Pu := O+u, Pv := O+v and Pu+v := O+u+v:

|u× v| = |u||v| sinϑu,v.

Moreover, in order to find the orientation of u× v we can use the right-hand rule,
as shown in the following picture:
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Why? The first property (u×v orthogonal to both u and v) follows immediately
from the fact that W(u) is a skew tensor and u is its axial vector:

(u× v) · u = W(u)v · u = v ·W(u)>u = −v ·W(u)u = −v · 0 = 0;

W(u)v · v = v ·W(u)>v = −v ·W(u)v, whence (u× v) · v = W(u)v · v = 0.

For the second property, we call n the unit vector u
|u| , we consider any two mutually

orthogonal unit vector b1 and b2 in the plane span(b1, b2) orthogonal to n and we
suppose them to be oriented such that b1 ⊗ b2 = n. Then

W(u) = |u|(b1 ⊗ b2 − b2 ⊗ b1).

Indeed,

|u|(b1 ⊗ b2 − b2 ⊗ b1)u = |u|((b2 · u)b1 − (b1 · u)b2) = 0

because both b1 and b2 are orthogonal to u, and

|u|2|b1 ⊗ b2 − b2 ⊗ b1|2 = |u|2 tr((b1 ⊗ b2 − b2 ⊗ b1)>(b1 ⊗ b2 − b2 ⊗ b1)) =

= |u|2 tr((b1 ⊗ b2)>(b1 ⊗ b2)− (b1 ⊗ b2)>(b2 ⊗ b1)−

− (b2 ⊗ b1)>(b1 ⊗ b2) + (b2 ⊗ b1)>(b2 ⊗ b1)) =

= |u|2 tr((b2 ⊗ b1)(b1 ⊗ b2)− (b2 ⊗ b1)(b2 ⊗ b1)−
− (b1 ⊗ b2)(b1 ⊗ b2) + (b1 ⊗ b2)(b2 ⊗ b1)) =

= |u|2 tr(b1 ⊗ b1 + b2 ⊗ b2) = 2|u|2.

Let P||(n) := n ⊗ n be the projection along the direction of n, and let P(n) :=
I −P||(n) = b1 ⊗ b1 + b2 ⊗ b2 be the projection onto the plane span(b1, b2).

W(u)2 = W(u)W(u) = |u|2(b1 ⊗ b2 − b2 ⊗ b1)(b1 ⊗ b2 − b2 ⊗ b1)

= |u|2(b1 ⊗ b2)(b1 ⊗ b2)− (b1 ⊗ b2)(b2 ⊗ b1)−
− (b2 ⊗ b1)(b1 ⊗ b2) + (b2 ⊗ b1)(b2 ⊗ b1) =

=
|W(u)|2

2
(−b1 ⊗ b1 − b2 ⊗ b2) = −|W(u)|2

2
P(n).

Then

|u× v| = |W(u)v| =
√

W(u)v ·W(u)v =
√

v ·W(u)>W(u)v =

=
√
−v ·W2(u)v =

√
v · |W(u)|2

2
P(n)v =

|W(u)|√
2

√
v ·P(n)v.

Since P(n)v is the projection of v onto the plane orthogonal to u, we have

v ·P(n)v = (P||(n)v + P(n)v) ·P(n)v = P(n)v ·P(n)v = |P(n)v|2,

and |P(n)v| = |v| sinϑn,v = |v| sinϑu,v. Hence

|u× v| = |W(u)|√
2

√
|P(n)v|2 = |u||v| sinϑu,v.
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4. Determinant

Definition 4. A skew trilinear form is any map α : V × V × V → R such that

(1) α is linear in each argument
(2) α(u,v,w) = −α(u,w,v) = −α(w,v,u) = −α(v,u,w) ∀u,v,w ∈ V.

An example of skew trilinear form is the triple product (also called mixed prod-
uct):

β : (u,v,w) 7→ u× v ·w.
The linearity property follows immediately from the linearity of both the inner and
the exterior products. Moreover we have

−u× v ·w = (−u× v) ·w = v × u ·w

= −
3∑

i,j,k=1

εijkujvkwi =

3∑
i,j,k=1

εkjiujvkwi = u×w · v

= −
3∑

i,j,k=1

εijkujvkwi =

3∑
i,j,k=1

εjikujvkwi = w × v · u.

We call P the prism in R3 “described by” u,v,w, that is built in this way:

- take the origin O of R3 and the points Pu := O + u, Pv := O + v and
Pw := O + w;

- three edges of P are the segments OPu, OPv and OPw;
- the others edges are already completely determined (because P is a prism).

As we can see in the picture above, the absolute value |u× v ·w| of u× v ·w is
the volume of the prism P. Indeed:

u× v ·w = |u× v||w| sinϑu×v,w = |u||v| cosϑu,v|w| sinϑu×v,w

Definition 5. The determinant of a tensor L is the real number det L such that

α(Lu,Lv,Lw) = det Lα(u,v,w)

for all vectors u,v,w and for every skew trilinear form α which is not the null form.
It turns out that det L = det[L], for any basis B.

In particular, we can fix any three linearly independent vectors u,v,w and we can
consider their triple product u× v ·w. Then, for each tensor L:

det L =
Lu× Lv · Lw

u× v ·w
.
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In the same way as we did for the prism P, we call LP the prism in R3 “described
by” Lu,Lv,Lw. Geometrically, we have that

(1) (whenever L is invertible) the sign of det L is positive if the orientation
of (Lu,Lv,Lw) is the same as the orientation of (u,v,w) and negative
otherwise;

(2) the absolute value of det L is the ratio between the volume of the prism LP
and the prism P:

|det L| = |Lu× Lv · Lw|
|u× v ·w|

=
vol(LP)

vol(P)
.

The last property tells us that |det L| can be geometrically interpreted as a volume
dilation factor.
Sometimes it can be useful to take as u,v,w the elements e1, e2, e3 of the basis B.
In this case, the prism P is a unit cube and its volume |e1 × e2 · e3| = e1 × e2 · e3
is 1. Then

det L = Le1 × Le2 · Le3.
(If B is not positively oriented, then e1×e2 ·e3 = −1 and det L = −Le1×Le2 ·Le3.)

Moreover, since L−1 maps Le1,Le2,Le3 back to, respectively, e1, e2, e3, we can
immediately check that

det L−1 =
L−1Le1 × L−1Le2 · L−1Le3

Le1 × Le2 · Le3
=

e1 × e2 · e3
Le1 × Le2 · Le3

=
1

det L
.

Example 4. The projection P(e1) is not invertible and “squeezes” the unit cube
described by e1, e2, e3 into the unit square described by e2, e3: its determinant,
indeed, is

det L = P(e1)e1 ×P(e1)e2 ·P(e1)e3 =

= (e2 ⊗ e2e1 + e3 ⊗ e3e1)× (e2 ⊗ e2e2 + e3 ⊗ e3e2)·
· (e3 ⊗ e3e3 + e2 ⊗ e2e3) =

= 0× e2 · e3 = 0× e3 = 0.

Example 5. The tensor L defined in the Example 3 has

det L = Le1 × Le2 · Le3 = (2e1 + 2e2)×
(
−1

2
e1 + e2

)
· e3 =

= 3e3 · e3 = 3.
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Example 6. We consider the shear tensor F := I + γe2 ⊗ e3, with 0 < γ ∈ R. (A
“shear” is a strain in which parallel layers are laterally shifted.)
Since Fe1 = e1, Fe2 = e2 and Fe3 = γe2 + e3, F deforms the unit cube in the
following way:

As we can see from the picture, F does not change volumes: indeed, its deter-
minant is

det F = Fe1 × Fe2 · Fe3 = e1 × e2 · (γe2 + e3) = e3 · (γe2 + e3) = 1.

5. Adjugate

Definition 6. The adjugate of the invertible tensor L is the tensor L∗ such that

L∗(u× v) = Lu× Lv ∀u,v ∈ V.

The adjugate can also be written as L∗ = det L(L−1)> = (det L)L−> = det L(L>)−1.

Why? For any vector w we have

u× v · (L∗)>Lw = L∗(u× v) · Lw = Lu× Lv · Lw = det L(u× v ·w),

whence (L∗)> = det L L−1 and L∗ = det L(L−1)>.

We call Pa the parallelogram “described by” u and v, and LPa the parallelogram
“described by” Lu and Lv. Then |u× v| and |Lu×Lv| are, respectively, the area
of Pa and the area of LPa, and

area(LPa)

area(Pa)
=
|Lu× Lv|
|u× v|

=
|L∗(u× v)|
|u× v|

=

∣∣∣∣L∗( u× v

|u× v|

)∣∣∣∣ = |L∗n|,

where n := u×v
|u×v| is the normal vector to the parallelogram Pa. Hence, the geo-

metric interpretation of the adjugate of L is that, whenever we take a surface S
and its normal vector n, the value |L∗n| is the area dilation factor of the surfaces
parallel to S.

Example 7. Let F := I + γe2 ⊗ e3 be the shear tensor as in the Example 6. The
matrices which represents F, F−1 and F∗ w.r.t. B are

[F ] =

1 0 0
0 1 γ
0 0 1

 [F ]−1 =

1 0 0
0 1 −γ
0 0 1

 [F ]∗ =

1 0 0
0 1 0
0 −γ 1


Since F∗e1 = e1 and F∗e3 = e3, the tensor F does not change the areas of the

surfaces parallel to either the vertical plane span(e1, e2) or the horizontal plane
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span(e2, e3). For the surfaces parallel to the vertical plane span(e1, e3), instead, F
makes the areas increase of a factor

|F∗e2| = |e2 − γe3| =
√

1 + γ2.
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