EXERCISES IN TENSOR ALGEBRA:
GEOMETRIC INTERPRETATIONS

ANDREA PEDRINI

NOTATIONS

In the following notes:

e R3 is the three-dimensional Euclidean space;

e V is the inner-product linear space of translations of R3;

e B3 = (e1,eq, e3) denotes a (positively oriented) basis of V, hence ey, ez, e3
are linearly independent unit vectors, pairwise orthogonal;

e “i.e.” is the abbreviation for the Latin “id est”, which means “that is”;

e “e.g.” is the abbreviation for the Latin “exempli gratia”, which means “for
example”;

e “w.r.t.” is the abbreviation for the English “with respect to”.

The “Why?” sections contain some detailed proof of what is said in the other
parts of these notes. In some cases, the “Why?” sections are long and boring.
Don’t be afraid: you don’t have to study and recall them, but you can read them
if you are interested in some deeper explanation of the results presented here.

1. INNER PRODUCT

Let w and v be two translations in V. By using the basis B, we write both u
and v in Cartesian components:
U = uiey + uzes + uges,
v = vie; + v2ep + vzes,
where u;,v; € R for ¢ =1,2,3.

Definition 1. The inner product (or dot product) between w and v is the real
number

U -V = UV + U2V + u3vs.

The inner product between the elements of the basis B is given by the Kronecker
Delta:

1 ifi=j
e"'ej:‘sij::{o if i j
whence the Cartesian components of w and v are
u=u-e; and v; =v-e;, fori=1,2,3.
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Definition 2. The length of a vector u = ujv; + ugve + uzvs is

lu| == Vu-u=/u?+ud+ui

Let ¥4, be the (planar) angle between w and v. Then
U v = |u||v|cosVy ..
Why? We can convince ourselves by considering first the dwo-dimensional Eu-

clidean space R2. In this case, u = uje; + uses and v = vie; + vaes. Let o and f3
be the planar angles as in the following picture, and note that ¥, , = 8 — a.

: Then
Vep-m-ommoomoo g . u = |u|cos o,
v/ ug = |u|sin «,
E vy = |v|cos B,
E vV vy = |v|sin .
€z /3 : Whence
Ul - - _19_ ___E____u_ . UV = ULV + UV =
A a = |u||v|(cos acos B + sinasin 5) =
> 1 : = |ul|v|cos(8 — a) =
e: Vi U

= |u||v| cos Vo, v-

In R? (and, in general, in any R™), we can consider the vector v — u. By the law
of cosines,

v —ul? = |[ul? + [v]* — 2|ul[v| cos Vo o
On the other hand, by definition of length and by linearity of the inner product,
v—uff=@w-u)- v-—u)=v-v-2v-utu-u=u’+v?-2v-u,

and hence u - v = |u||v| cos Vo v -

2. REPRESENTATION OF A TENSOR WITH A MATRIX (IN A FIXED BASIS)

Whenever we fix a basis for the space V (e.g. the basis B = (e1, ez, e3)) we
immediately have that the diads e; ® e; form a basis for the space L(V) of all the
(second-order) tensor L: V — R, and each tensor L in L(V) can be written as

3
L= Z Lije; ® e,

4,j=1

where L;; := e; - Le; are the Cartesian components of L.
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For this reason we can always represent the tensor L with respect to the basis B
by using the matriz

Lyy Lz Ly e;-Le; e;-Ley e;-Les
[L] == (Lij)ij=12,3= | La1 Loz Loa3| =|e2-Le; ey-Ley; ey-Les
L31 L3z L33 e3-Le; e3-Ley e3-Les
T ) T
L€1 L62 L€3

whose columns are the vectors obtained by applying L to the elements e, es, e3 of
the basis B.

The matrices that represent LT and L~! w.r.t. the basis B are, respectively, [L] "
and [L]71.

Why? If we apply the tensor L to a generic vector w = uie; + uses + uges in ¥V
we obtain

3

3 3
Lu=L Zujej :ZujLej :Z(u~ej)Lej =
j=1 j=1

=1

Z(u -ej) (Z(Lej . ei)ei> = Z (u-ej)(e;-Lejle; =

j=1 i=1 ij=1

3 3
Y (ei-Lej)(eivweu= (Y Lieae | u

i,j=1 i,j=1
Example 1. The matrices that represent the identity tensor I and the null tensor
0 w.r.t any basis B are
0
0

1 0 0
[Il=10 1 0 and [0] =
0 0 1 0

0 0
0 0
0 0

Example 2. W.r.t. B, the projections P||(e1) := e;®e; and P(e;) :=I-e;®e; =
es ® ey + es ® eg are respectively represented by the matrices

1 00 0 0 O
0 0 O and 0 1 0
0 0 O 0 0 1
Example 3. Let L be the tensor that maps

1
e — 2e; + 2es, ey — —561 +ey; and e3> es.

Then, w.r.t. the basis B = {ej, €3, e3}, the matrices that represent L and LT are,
respectively,

2 0
1 0
0 1

In order to find the matrix that represents the inverse L™!, we can proceed by
computing directly [L]~!. We consider a generic matrix
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a b ¢
L= (d e f
g h i
and we impose the condition [L]~[L] = []:
a b c 2 —% 0 1 0 0
d e f 2 1 0]=(0 10
g h 1 0 0 1 0 0 1
We obtain the systems
2a+2b=1 2d+2e=0 2g4+2h =0
1 1 1
c=0 f=0 i=1
with solutions
1 2
5:1 e:g h=
6 3 i=1
c=0 f=0
Then
1 1
3 6
=2 2 o
0 O

3. EXTERIOR PRODUCT

A tensor W is skew if WT = —W. When W is a skew tensor, we can always
associate with W a vector w (W), called the azial vector of W, such that
(1) Ww(W)=0 (w(W) is in the azis AW) :={u € V: Wu =0} of W),
W2 B tr(WWT)

(2) [w(W)P = =5 .

Conversely, the skew tensor associated with the vector w is the skew tensor W (w)
such that w is its axial vector.

Actually, when we consider the skew tensor W we can always find two different
vectors that satisfy the two conditions above (if we call one of them w, then the
other is —w). However, if we choose one of them to be the axial vector of W
and impose the linearity condition w(Wj; + W3) = w(W1) + w(W3), then the
axial vectors of all the skew tensors of V are automatically determined. This choice
is strictly related to the orientation of the space V. In these notes (and in the
homework) we fix the positive orientation, which is the choice of the axial vectors
such that

Wi(ey)es = es.
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Definition 3. The exterior product (or cross product) between the two vectors u
and v is the vector

u X v:=W(u)v.
By choosing the positive orientation, we immediately obtain
e; X ey = es.
We also have
es Xxe3=e; and e3 X e; =es.
Moreover, the exterior product is linear in both the arguments, and v xu = —u xv.
In Cartesian components we have
3
U Xv= E EijkU;VE€Eq,
i,j, k=1

where €, are the component of Ricci alternator (or also the 3-dimensional Levi-
Ciwvita symbol)

1 if ijk is an even permutation of 123
gijk =1 —1 if 45k is an odd permutation of 123
0 if 75k is not a permutation of 123

Note. An even permutation of 123 is a permutation that can be obtained from
123 by an even number of two-element exchanges. An odd permutation of 123
is a permutation that can be obtained from 123 by an odd number of two-element
exchanges. Hence, the permutations of 123 are

even: 123 231 312, odd: 132 213 321.

The exterior product can also be computed by using the formal determinant

€1 €y e3
uXv=|uy us ug|= (ugvs— usve)e; + (ugv; — ujvs)es + (u1v2 — ugvy)es.
U1 V2 V3
The vector u X v enjoys the following two interesting properties:
(1) it is orthogonal to both w and v,
(2) its length is the area of the parallelogram “described by” w and v, whose
vertices are the points O, P, := O+u, Py := O+4v and Py 44 := O+u+v:
|lu x v| = |u||v|sin Dy o-

Moreover, in order to find the orientation of u X v we can use the right-hand rule,
as shown in the following picture:

length

et

: uxv
|u||v|sm1%lv

S~— plane orthogonal to u
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Why? The first property (u x v orthogonal to both u and v) follows immediately
from the fact that W (u) is a skew tensor and w is its axial vector:

(uxv) - u=Wv-u=v-Wu) u=—v - W)u=—v-0=0;
W(uv-v=v-W(u) v=—v W(u)v, whence (u x v)-v =W (u)v-v =0.

For the second property, we call n the unit vector ﬁ, we consider any two mutually

orthogonal unit vector by and by in the plane span(b;, by) orthogonal to n and we
suppose them to be oriented such that b; ® by = n. Then

W (u) = |u|(by @ by — by @ by).
Indeed,
|u|(by ® ba — by ® by)u = |u|((bz - u)by — (b1 - u)ba) =0
because both b; and by are orthogonal to u, and
[u?|by @ by — by @ by|? = |u|? tr((by @ by — by @ b1) T (by @ by — by @ b)) =
= |ul? tr((by @ by) T (b1 @ ba) — (by @ by) " (by @ by)—
—(by®@b1) (b @by) + (ba@by) " (b @ by)) =
= |u* tr((by @ by)(b1 @ by) — (b2 @ by) (b2 @ by)—
— (b1 ® ba)(by @ ba) + (b1 ® ba)(by @ by)) =
= |u|*tr(by @ by + by ® by) = 2|ul?.
Let P|(n) := n ® n be the projection along the direction of n, and let P(n) :=
I —Pj(n) =b; ® by + by ® by be the projection onto the plane span(by, by).
W(u)? = W(u)W(u) = [u>(b; @ by — by @ by)(by @ by — by @ by)
= |u*(by ® by)(by ® by) — (b1 @ by)(by @ by)—
— (b2 ®b1)(b1 ® ba) + (by @ b1) (b2 ® by) =
W (u)|? (W (u)|?

= T(_bl ®b; — b2 ®by) = —TP(n).

Then

lu x v| = [W(u)v| = VW (u)v - W(u)v = \/v -W(u)TW (u)v =

=4/ —v - W2(u)v = \/’U . MP(H)’U = W\/(;) Vv -P(n)v.

Since P(n)v is the projection of v onto the plane orthogonal to u, we have

v-P(n)v = (P)(n)v+P(n)v) P(n)v=Pn)v -P(n)v= |P(n)v|?,

and |P(n)v| = |v|sindy, , = |v|sindy, ». Hence

|lu x v| = W\/(;)l VIP(n)v|? = |u||v|sin sy .
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4. DETERMINANT

Definition 4. A skew trilinear form is any map a: V x V x V — R such that

(1) « is linear in each argument
(2) a(u,v,w) = —a(u,w,v) = —a(w,v,u) = —a(v,u,w) Yu,v,w .

An example of skew trilinear form is the triple product (also called mized prod-
uct):
B: (u,v,w) » u X v-w.
The linearity property follows immediately from the linearity of both the inner and
the exterior products. Moreover we have

—UXV w=(-uUXV) W=vXUuU- W
3 3
= — Z EijkU;VEW; = Z EkjiljUEW; = U X W -V
i,5,k=1 i,5,k=1
3 3
— Z EijkUjVEW; = Z €jikUjVEW; = W XV - U.
i,j,k=1 i,j,k=1

We call P the prism in R? “described by” u, v, w, that is built in this way:
- take the origin O of R? and the points P, := O +u, P, := O + v and
Py =0+ w;
- three edges of P are the segments OPF,,, OP, and OP,;
- the others edges are already completely determined (because P is a prism).

uxv

|w|cos®d

uxv,w

0}

Py
Volume =|ul|v||w|sind , cosd,,, lul[v|sin®)
uv

As we can see in the picture above, the absolute value |u X v - w| of u x v - w is
the volume of the prism P. Indeed:
UXv-w=|uXv||wsinVyxyw = |U||V]cos Ty | w|sinVyxwvw
Definition 5. The determinant of a tensor L is the real number det L such that
a(Lu, Lv, Lw) = det L a(u, v, w)

for all vectors u, v, w and for every skew trilinear form « which is not the null form.
It turns out that det L = det[L], for any basis B.

In particular, we can fix any three linearly independent vectors u, v, w and we can
consider their triple product w x v - w. Then, for each tensor L:

Lu x Lv - Lw
uxv-w

detL =
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In the same way as we did for the prism P, we call LP the prism in R? “described
by” Lu, Lv, Lw. Geometrically, we have that
(1) (whenever L is invertible) the sign of detL is positive if the orientation
of (Lu,Lv,Lw) is the same as the orientation of (u,v,w) and negative
otherwise;
(2) the absolute value of det L is the ratio between the volume of the prism LP
and the prism P:

|Lu x Lv - Lw| _ vol(LP)
luxv-w  vol(P)’

|detL| =

The last property tells us that | det L| can be geometrically interpreted as a volume
dilation factor.
Sometimes it can be useful to take as u, v, w the elements eq, es, es of the basis B.
In this case, the prism P is a unit cube and its volume |e; X e3 - e3] = e X e3 - e3
is 1. Then
det L = Le; x Les - Les.

(If B is not positively oriented, then e; X es-e3 = —1 and det L = —Le; x Ley-Les.)

Moreover, since L™ maps Le;, Les, Les back to, respectively, e1, es, es, we can
immediately check that

d tLil L*1L61 X LilLEQ . L71L63 e; X eg-es 1
e = = = .

Le; x Les - Leg Le; x Les - Leg  detL
Example 4. The projection P(e;) is not invertible and “squeezes” the unit cube
described by ej,es, es into the unit square described by es, es: its determinant,

indeed, is

detL =P(er)e; x P(ej)es - P(er)es =
= (e2 ® ese; +e3Rezer) X (e2 ® ezes + €3 ® ezeq):
-(e3 ® eze3 + ex ® eges) =
=0Xxey-e3=0xe3=0.

Example 5. The tensor L defined in the Example [3| has
1
det L = Le; x Les - Les = (2e1 + 2e3) X (—261 + 62) -e3 =

:363'63:3.
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Example 6. We consider the shear tensor F:=1+ves @ e3, with 0 <y € R. (A
“shear” is a strain in which parallel layers are laterally shifted.)

Since Fe; = e, Fes = es and Fes = yes + e3, F deforms the unit cube in the
following way:

As we can see from the picture, F does not change volumes: indeed, its deter-
minant is

detF =Fe; xFes-Fes =e1 xeq-(yea+e3) =es-(vea+e3) =1,

5. ADJUGATE
Definition 6. The adjugate of the invertible tensor L is the tensor L* such that
L*(u x v) = Lu x Lv Yu,v € V.

The adjugate can also be written as L* = det L(L™!)T = (det L)L=" = det L(L )~

Why? For any vector w we have
uxv- (L) "Lw=L*(u xv) - Lw=Lu x Lv - Lw = det L(u x v - w),

whence (L*)T =det LL™! and L* = det L(L™1)T.

We call Pa the parallelogram “described by” u and v, and L'Pa the parallelogram
“described by” Lu and Lv. Then |u x v| and |Lu x Lo| are, respectively, the area
of Pa and the area of LPa, and

area(LPa)  |Lu x Lv|  |[L*(u x v)|
area(Pa)  |luxwv| = |uxo

SN} R (el | T
|lu x v|

is the normal vector to the parallelogram Pa. Hence, the geo-

where n := |$§5\
metric interpretation of the adjugate of L is that, whenever we take a surface S
and its normal vector n, the value |L*n| is the area dilation factor of the surfaces

parallel to S.

Example 7. Let F := I+ yes ® e be the shear tensor as in the Example [6} The
matrices which represents F, F~! and F* w.r.t. B are

100 10 0 1 0 0
[Fl=(0 1 « [F]7' =10 1 —y [FI*=(0 1 o0
00 1 00 1 0 —y 1

Since F*e; = e; and F*es = e3, the tensor F does not change the areas of the
surfaces parallel to either the vertical plane span(ej,es) or the horizontal plane
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span(es, es). For the surfaces parallel to the vertical plane span(ey, es), instead, F
makes the areas increase of a factor

|F*es| = |ea — ves| = /1 +~2.



	Notations
	1. Inner product
	Why?

	2. Representation of a tensor with a matrix (in a fixed basis)
	Why?

	3. Exterior product
	Why?

	4. Determinant
	5. Adjugate
	Why?


